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Background

Distribution matching

source

Input point cloud

target

Feature distribution Transformation

Sinkhorn-Knopp

Weighted-SVD

𝑇 = [𝑅, 𝑡]

Deep Probabilistic Registration

• It is suitable for point clouds with 
density variations;



Background

Challenges

v Deep point cloud registration methods depend on large amounts of ground 

truth transformations or correspondences;

v Underperform on point clouds with partial overlaps.



Our solution 

Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration

1. A point cloud should share an identical posterior distribution in coordinate and feature 

spaces – Self-Consistency Loss function.

2. The GMMs from two point clouds should be the almost same in their overlapped regions 

– Cross-consistency Loss function.

3. The detected overlapped regions should have the almost same clustering centroids 

      – Contrastive Loss function.

Our methods:
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Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration

Self-consistency loss
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Points of a point cloud share a similar posterior probability in feature and coordinate spaces 

the probability of 𝑝!" belonging to the cluster 𝑗 in feature space
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Share similar probability
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Cross-consistency loss
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Local contrastive loss
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Feature Extractor

Self-consistency: points of a point cloud share a 
similar posterior probability in feature and 
coordinate space. 

Cross-consistency: points in the overlapping 
regions of two point clouds share the same  
posterior. 
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Experiments

§ Evaluation for real word dataset: 

§ 3DMatch and 3DLoMatch 

§ Evaluation for synthesis dataset: 

§ ModelNet40

Dataset Baselines

§ Supervised methods

§ OMNet

§ Unsupervised methods

§ SGP+R10K

§ UGMM



Results on both 3DMatch and 3DLoMatch datasets. 

3DMatch 3DLoMatch

Method RRE RTE CD RRE RTE CD

Supervised Methods

FCGF 85.1% 1.949 0.066 40.1% 3.147 0.1

D3Feat 81.6% 2.161 0.067 37.2% 3.361 0.103

OMNet 35.9% 4.166 0.105 8.4% 7.299 0.151

Unsupervised Methods

PPFFoldNet 69.3% 3.021 0.089 24.8% 7.527 1.884

SGP+R10K 85.5% 1.986 0.079 39.4% 3.529 0.099

UDPReg(ours) 91.4% 1.642 0.064 64.3% 2.951 0.086
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Results on both ModelNet and ModelLoNet datasets. 

ModelNet ModelLoNet

Method RRE RTE CD RRE RTE CD

Supervised Methods

DCP-v2 11.98 0.171 0.0117 16.5 0.3 0.0268

DeepGMR 7.871 0.108 0.0056 9.867 0.117 0.0064

OMNet 2.947 0.032 0.0015 6.517 0.129 0.0074

Unsupervised Methods

RIENet 2.447 0.018 0.0365 14.49 0.105 0.0828

UGMM 13.65 0.124 0.0753 17.39 0.161 0.0745

UDPReg(ours) 1.331 0.011 0.0306 3.578 0.069 0.0416
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Qualitative Results on 3DLoMatch  
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Thank You for Listening!


