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MaxQuery: Quick Preview

• Real-world medical image 
segmentation

• Tail conditions: rare disease
• MaxQuery for out-of-distribution 

(OOD) localization
• Query distribution loss
• Validated on real-world pancreatic 

& liver tumor datasets

2

IPMNPDAC SCN CP

MCNSPTPNET

Common Pancreatic Diseases
In-distribution

AC DC

Pe
ri-

pa
nc

re
at

ic
 

D
is

ea
se

s

…

R
ar

e 
D

is
ea

se
s

Unseen Diseases
(Near) Out-of-distribution

Real-world Trustworthy Medical AI

D
at

a 
D

is
tri

bu
tio

n

Inlier Segmentation OOD Localization



Real-world Medical Image Segmentation

• Long-tailed medical conditions
• Near-OOD Problem

• Outliers: unseen/rare tumors
• Inliers: labeled lesions
• Subtle Differences

• Address both inlier segmentation 
& OOD localization
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[1] Roy et al., Does your dermatology classifier know what it doesn’t know? detecting the long-tail of unseen conditions, Medical Image 
Analysis 75 (2022): 102274.



Framework Overview

CNN Backbone
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[2] Cheng et al., Per-pixel classification is not all you need for semantic segmentation, NeurIPS 2021.
[3] Yu et al., Cmt-deeplab: Clustering mask transformers for panoptic segmentation, CVPR 2022. 
[4] Yu et al., k-means Mask Transformer., ECCV 2022.



Managing Cluster with QD Loss
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• Manipulate object queries to 
focus on tumors

• Enforce query-level boundaries
• Benefits both two tasks



Localizing OOD Regions with MaxQuery

• Motivation: cluster analysis
• OOD pixels far from inlier centers

• MaxQuery: the negative of maximal 
query response

• Reflects the distance/similarity of a 
pixel and its assigned center

• Intuitively, MaxQuery of inlier pixels 
is usually smaller than outliers
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An illustrative Example
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Cluster assignments for an in-distribution example

Cluster assignments for an OOD example

• Background & 
organ: activated 
confidently by 
one/few queries

• Inlier tumor: 
concentrate at a 
single query

• Outlier tumor: split 
into multiple centers 
with lower response



Main Results
• Two curated real-world tumor segmentation datasets, pancreatic & liver
• State-of-the-art OOD detection performance at both pixel & case level
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Qualitative Results
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Results & Ablation Studies

• Outperforms strong baseline (e.g., nnUNet) for inlier segmentation
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• Robust to query distribution selection • Query-level vs. category-level score



Conclusion

• Processing a large collection of medical imaging data with long-
tailed distribution is challenging.

• Two curated real-world datasets
• Interpreting segmentation as query/cluster assignment
• Novel MaxQuery & QD loss are evidently helpful. 
• Great potential to further boost the adoption of medical image 

segmentation in designing various clinical applications 
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