

Devil is in the Queries: Advancing Mask Transformers for Real-world Medical Image Segmentation and Out-of-Distribution Localization

Mingze Yuan^{1,2}, Yingda Xia¹, Hexin Dong^{1,2}, Zifan Chen², Jiawen Yao¹, Mingyan Qiu¹, Ke Yan¹, Xiaoli Yin⁴, Yu Shi⁴, Xin Chen³, Zaiyi Liu³, Bin Dong^{1,5}, Jingren Zhou¹, Le Lu¹, Ling Zhang¹, Li Zhang²

¹Alibaba Group ²Peking University ³Guangdong Province People's Hospital ⁴Shengjing Hospital ⁵Peking University Changsha Institute for Computing and Digital Economy

MaxQuery: Quick Preview

- Real-world medical image segmentation
 - Tail conditions: rare disease
- MaxQuery for out-of-distribution (OOD) localization
- Query distribution loss
- Validated on real-world pancreatic & liver tumor datasets

Real-world Medical Image Segmentation

Long-tailed medical conditions

JUNE 18-22, 2023

- Near-OOD Problem
 - Outliers: unseen/rare tumors
 - Inliers: labeled lesions
 - Subtle Differences
- Address both inlier segmentation
 & OOD localization

())

[1] Roy et al., Does your dermatology classifier know what it doesn't know? detecting the long-tail of unseen conditions, Medical Image Analysis 75 (2022): 102274.

Framework Overview

[2] Cheng et al., Per-pixel classification is not all you need for semantic segmentation, NeurIPS 2021.
[3] Yu et al., Cmt-deeplab: Clustering mask transformers for panoptic segmentation, CVPR 2022.
[4] Yu et al., k-means Mask Transformer., ECCV 2022.

Managing Cluster with QD Loss

- Manipulate object queries to focus on tumors
- Enforce query-level boundaries
- Benefits both two tasks

Localizing OOD Regions with MaxQuery VER CANADA

←→ MaxQuery for outlier

- Motivation: cluster analysis
 - OOD pixels far from inlier centers
- MaxQuery: the negative of maximal query response
 - Reflects the distance/similarity of a pixel and its assigned center
- Intuitively, MaxQuery of inlier pixels is usually smaller than outliers

An illustrative Example

Cluster assignments for an in-distribution example

Cluster assignments for an OOD example

- Background & organ: activated confidently by one/few queries
- Inlier tumor: concentrate at a single query
- Outlier tumor: split into multiple centers with lower response

Main Results

- Two curated real-world tumor segmentation datasets, pancreatic & liver
- State-of-the-art OOD detection performance at both pixel & case level

		Pancr	eatic %		Liver %				
Methods	00	D Localizat	tion	OOD_{case}	OOD Localization			OOD_{case}	
	AUROC↑	AUPR [↑]	$\mathrm{FPR}_{95}\downarrow$	AUC↑	AUROC↑	AUPR↑	$\mathrm{FPR}_{95}\downarrow$	AUC↑	
MC Dropout [27]	49.08	11.47	84.60	72.91	39.61	16.05	91.13	34.05	
MSP [21]	53.81	13.44	86.44	73.38	75.14	25.27	70.04	66.76	
MaxLogit [20]	58.46	21.93	83.68	73.42	78.60	35.47	48.73	65.68	
SynthCP [52]	69.86	26.50	66.65	68.43	74.93	34.03	57.91	63.34	
SML [26]	56.10	30.44	77.81	62.26	86.64	44.59	31.04	63.85	
Ours (w/o \mathcal{L}_{qd})	63.54	25.25	67.09	74.87	74.95	42.31	53.52	65.91	
Ours	82.52	55.60	46.19	77.97	88.75	48.80	23.93	69.04	

Qualitative Results

Results & Ablation Studies

• Outperforms strong baseline (e.g., nnUNet) for inlier segmentation

	Pancreatic %						Liver %							
Methods	PDAC	IPMN	PNET	SCN	СР	SPT	MCN	Avg.	HCC	ICC	Meta.	Heman.	Cyst	Avg.
UNet [7]	63.96	21.07	21.72	30.70	17.88	33.96	18.10	29.62	61.59	28.76	43.77	65.01	37.39	47.30
UNet++ [12]	63.43	22.85	14.52	25.09	15.02	21.36	10.07	24.62	56.51	29.13	36.88	56.74	46.60	45.17
TransUNet [1]	64.91	31.18	26.78	38.96	22.39	29.87	30.27	34.91	52.26	25.50	42.31	70.90	47.52	47.70
nnUNet [5]	65.65	27.60	32.59	36.46	23.33	31.73	30.96	35.47	57.22	28.16	52.81	77.55	46.49	52.45
Ours	67.91	46.92	32.07	42.51	31.36	42.67	28.97	41.77	67.61	30.78	60.40	77.07	47.61	56.69

• Robust to query distribution selection • Query-level vs. category-level score

Query Dist. (N_1, N_2, N_3)	AUROC↑	AUPR↑	FPR↓	$\mathrm{DSC}_{\mathrm{inlier}}\uparrow$
$\frac{(N_1, N_2, N_3)}{\text{SML [26]}}$	56.10	30.44	77.81	35.47
(8, 4, 20)	84.44	51.32	42.10	36.50
(8, 20, 4)	83.73	49.76	43.32	39.79
(16, 4, 12)	82.52	55.60	46.90	41.77
(20, 4, 8)	85.66	55.17	37.24	38.19
(24, 4, 4)	86.41	52.58	33.70	39.43

Level	Softmax	AUROC↑	AUPR†	FPR95↓	
Catagory	post	58.14	16.28	79.29	
Calegory	pre	52.70	24.59	88.40	
Query	post	76.88	33.98	55.82	
	pre	82.52	55.60	46.19	

Conclusion

- Processing a large collection of medical imaging data with longtailed distribution is challenging.
- Two curated real-world datasets
- Interpreting segmentation as query/cluster assignment
- Novel MaxQuery & QD loss are evidently helpful.
- Great potential to further boost the adoption of medical image segmentation in designing various clinical applications