MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth Seeds for 3D Object Detection

Yang Jiao, Zequn Jie, Shaoxiang Chen, Jingjing Chen,

Lin Ma and Yu-Gang Jiang

02 Methodology

03 Experiments

□ Multi-Sensor Perception

- LiDAR and camera are widely equipped on autonomous driving cars
 - ➢ NuScenes Cars − 1 LiDAR & 6 cameras
 - ➢ Waymo Cars − 4 LiDAR & 5 cameras
- LiDAR

- Accurate spatial measurement
- Long range sparsity

- Rich semantics
- Ill-posed depth estimation

Making the best of the two worlds !!!

Two LiDAR-camera Fusion Paradigms

• Projecting LiDAR to camera (L2C)

- Accurate position projection
- Waste informative dense image semantics
- Representatives of L2C and C2L
- ▶ L2C:
 - PointPainting (CVPR 2020), PointAugmenting (CVPR 2021), TransFusion (CVPR 2022), DeepInteraction (NIPS 2022)
- ► C2L
 - ✓ MVP (NIPS 2021), BEVFusion-Alibaba (NIPS 2022), BEVFusion-MIT (ICRA 2023)

• Lifting camera to LiDAR (C2L)

- Complement both geometrics and semantics
- Suffer from depth estimation error

D Performance Comparison of L2C and C2L

• Performances on NuScenes detection task

Method	Paradigm	Conference	mAP	NDS
PointAugmenting [1]	L2C	CVPR 2021	66.8	71.0
TransFusion [2]	L2C	CVPR 2022	68.9	71.7
DeepInteraction [3]	L2C	NIPS 2022	70.8	73.4
MVP [4]	C2L	NIPS 2021	66.4	70.5
BEVFusion-ALI [5]	C2L	NIPS 2022	69.2	71.8
BEVFusion-MIT [6]	C2L	ICRA 2023	70.2	72.9

[1] PointAugmenting: Cross-Modal Augmentation for 3D Object Detection (CVPR 2021)

[2] TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers (CVPR 2022)

[3] DeepInteraction: 3D Object Detection via Modality Interaction (NIPS 2022)

[4] Multimodal Virtual Point 3D Detection (NIPS 2021)

[5] BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework (NIPS 2022)

[6] BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation (ICRA 2023)

D Different "seeds" lift granularities

• Raw pixels as seeds

- Better geometric description
- Sparse sampling due to computation cost
 limitation

• Feature grids as seeds

- Better semantic description
- Information loss due to downsampling
- Depth information in lift "seeds" is under-explored
- Fine-grained cross-modal interaction in voxel space is non-trivial

U Why depth information important

- Determine spatial locations of lifted seeds
- Provide color-insensitive cues

U What does our MSMDFusion do

- Provide a multi-scale fusion framework for comprehensive LiDAR geometrics and camera semantics fusion
- Enhance depth reliability (*Multi-Depth Unprojection, MDU*)
- Design a fine-grained LiDAR-camera interaction operation in voxel space for filtering noises (*Gated Modality-Aware Convolution, GMA-Conv*)

Framework of MSMDFusion

Multi-Depth Unprojection (MDU)

- Preliminary: MVP nearest neighbor depth assignment strategy
- Motivation: Spatial proximity in 2D images is not always consistency with that in 3D space
- Solution: K nearest neighbor depth assignment to explore more reliable depth prediction

(b) K Nearest neighbor retrieval (Ours)

Gated Modality-Aware Convolution (GMA-Conv)

- Motivation: Lifted seeds are inherently noisy due to inaccurate depth estimation
- Challenge: Designing a fine-grained cross-modal interactor is restricted by huge computation and memory cost
- A simple computation and space complexity estimation

LiDAR voxels = N Camera voxels = M (N, $M \approx 10^5$ for a LiDAR frame)

$$\mathcal{O}(N^2), \mathcal{O}(M^2), \mathcal{O}(MN)$$

Intractable !!!

- > Standard Cross-Attention : O(MN)
- Local Attention like Swin-Transformer :
 O(MN) in retrieving neighbors

Gated Modality-Aware Convolution (GMA-Conv)

• Solution: Utilizing the redundancy of lifted seeds

- Blue LiDAR
- Yellow Camera
- Red LiDAR and Camera

• Experiments

Experiments

Comparison with SOTA methods

• On nuScenes detection track

Method	Modality	mAP	NDS	Car	Truck	C.V.	Bus	Trailer	Barrier	Motor.	Bike	Ped.	T.C.
PointPillar [8]	L	40.1	55.0	76.0	31.0	11.3	32.1	36.6	56.4	34.2	14.0	64.0	45.6
CenterPoint [27]	L	60.3	67.3	85.2	53.5	20.0	63.6	56.0	71.1	59.5	30.7	84.6	78.4
TransFusion-L [1]	L	65.5	70.2	86.2	56.7	28.2	66.3	58.8	78.2	68.3	44.2	86.1	82.0
PointPainting [22]	LC	46.4	58.1	77.9	35.8	15.8	36.2	37.3	60.2	41.5	24.1	73.3	62.4
3D-CVF [29]	LC	52.7	62.3	83.0	45.0	15.9	48.8	49.6	65.9	51.2	30.4	74.2	62.9
PointAugmenting [23]	LC	66.8	71.0	87.5	57.3	28.0	65.2	60.7	72.6	74.3	50.9	87.9	83.6
MVP [28]	LC	66.4	70.5	86.8	58.5	26.1	67.4	57.3	74.8	70.0	49.3	89.1	85.0
TransFusion [1]	LC	68.9	71.7	87.1	60.0	33.1	68.3	60.8	78.1	73.6	52.9	88.4	86.7
VFF [10]	LC	68.4	72.4	86.8	58.1	32.1	70.2	61.0	73.9	78.5	52.9	87.1	83.8
BEVFusion [13]	LC	69.2	71.8	88.1	60.9	34.4	69.3	62.1	78.2	72.2	52.2	89.2	85.2
BEVFusion [16]	LC	70.2	72.9	88.6	60.1	39.3	69.8	63.8	80.0	74.1	51.0	89.2	86.5
UVTR [9]	LC	67.1	71.1	87.5	56.0	33.8	67.5	59.5	73.0	73.4	54.8	86.3	79.6
DeepInteraction [26]	LC	70.8	73.4	87.9	60.2	37.5	70.8	63.8	80.4	75.4	54.5	90.3	87.0
MSMDFusion (Ours)	LC	71.5	74.0	88.4	61.0	35.2	71.4	64.2	80.7	76.9	58.3	90.6	88.1

• On nuScenes tracking track

Method	Modality	\mid AMOTA \uparrow	$AMOTP \downarrow$	$\mathrm{TP}\uparrow$	$\mathrm{FP}\downarrow$	$\mathrm{FN}\downarrow$	Recall \uparrow
CenterPoint [27]	L	63.8	0.606	95877	18612	22928	67.5
TransFusion [1]	LC	71.8	0.551	96775	16232	21846	75.8
UVTR [9]	LC	70.1	0.686	98434	15615	20190	75.0
BEVFusion [16]*	LC	74.1	0.403	99664	19997	19395	77.9
MSMDFusion (Ours)	LC	74.0	0.549	98624	14789	19853	76.3

D Efficacy of our lifted seeds (virtual points)

• Number of Virtual point Per Frame (NVPF and performance comparison)

Method	NVPF ²	mAP	NDS	FPS
BEVFusion [13] BEVFusion [16]	5M 2M	69.2 70.2	71.8 72.9	0.7 8.4
MSMDFusion(Ours)	16k	71.5	74.0	2.1

Experiments

Effects of KNN retrieval in MDU

• Effects of the number of depths per seed (K) in MDU

Experiments

U Visualization for MDU

• Discussions

Discussions

D Problems under-explored

- Application
 - Lightweight multi-sensor fusion framework
 - > Hardware-friendly operators
- Performance
 - > Intelligent sampler and filter for raw point lift-based multi-modal detector
 - Long-range temporal information utilization to mitigate point-cloud sparsity

