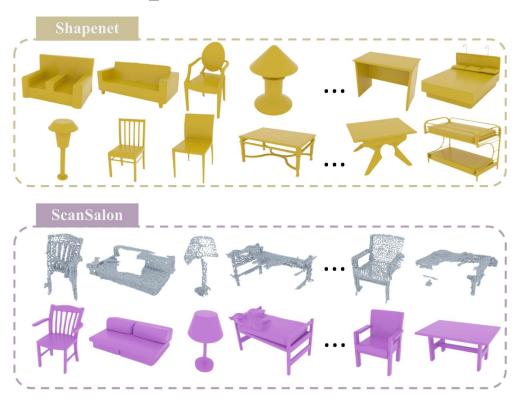


SCoDA: Domain Adaptive Shape Completion for Real Scans

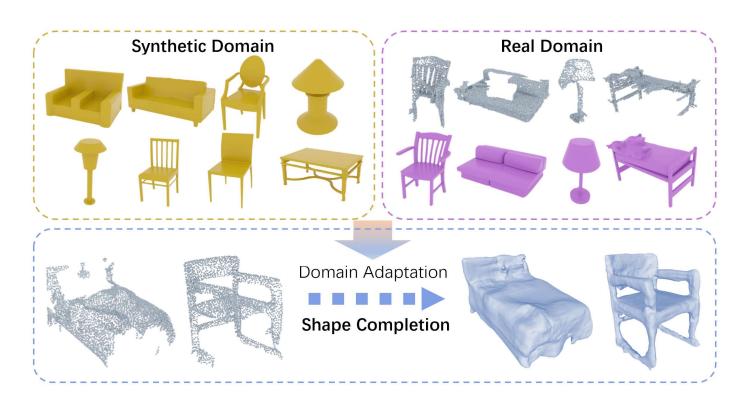
CVPR 2023

Yushuang Wu^{1,2,3} Zizheng Yan^{1,2,3} Ce Chen^{1,2} Lai Wei⁴ Xiao Li⁵ Guanbin Li^{6,7} Yihao Li^{1,2} Shuguang Cui^{2,1} Xiaoguang Han^{2,1#}

¹FNii, CUHKSZ ²SSE, CUHKSZ ³SRIBD ⁴SDS, CUHKSZ ⁵Microsoft Research Asia ⁶Sun Yat-sen University ⁷Research Institute, Sun Yat-sen University, Shenzhen



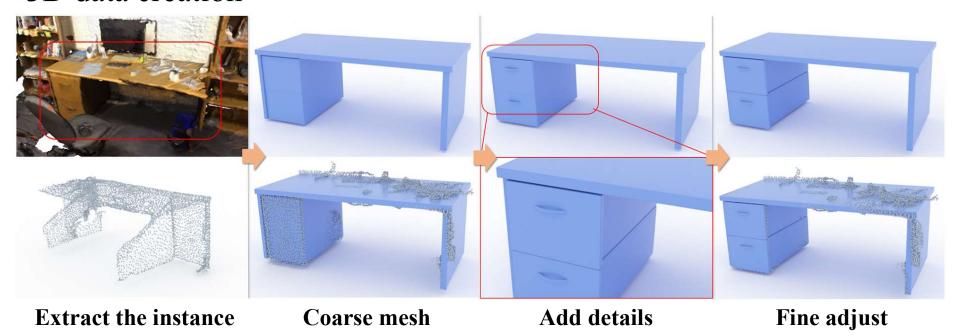
Domain Gap


Synthetic v.s. Real

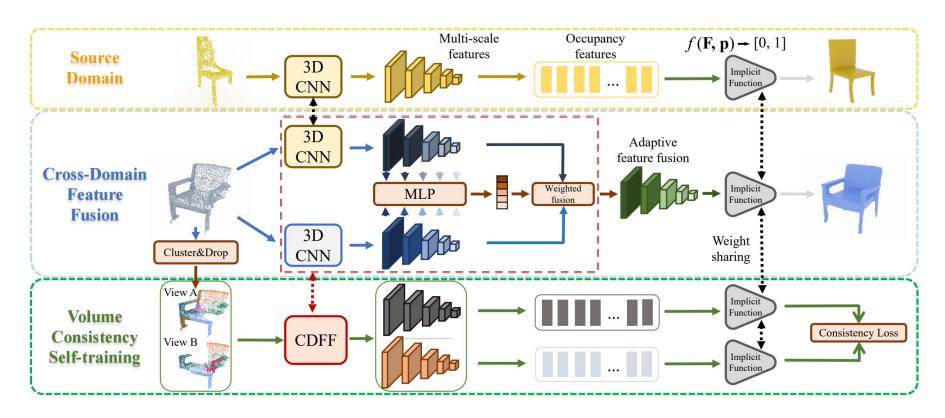
- Noise
- Incompleteness
- Sparsity

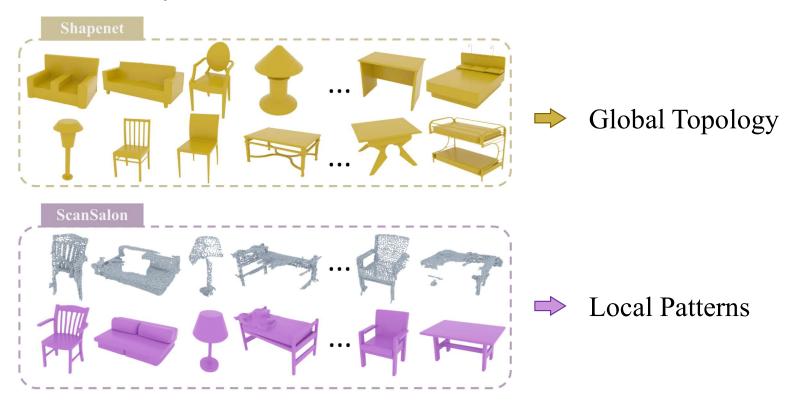
Task: Domain Adaptive Shape Completion

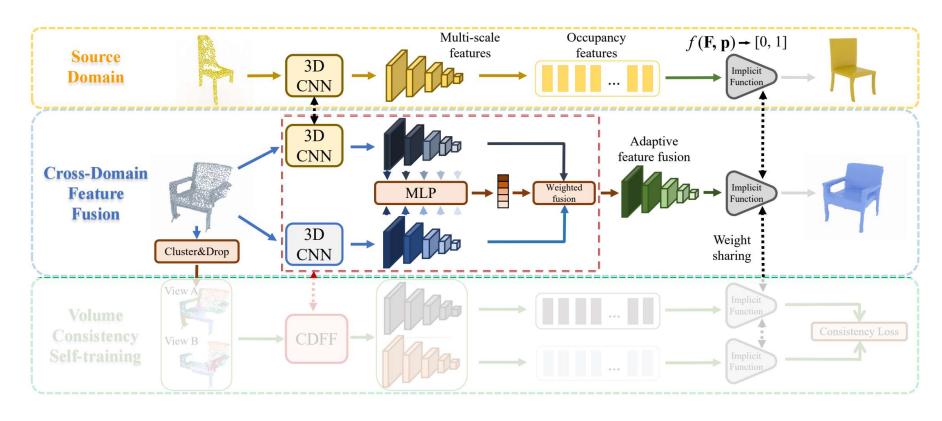
Dataset: ScanSalon

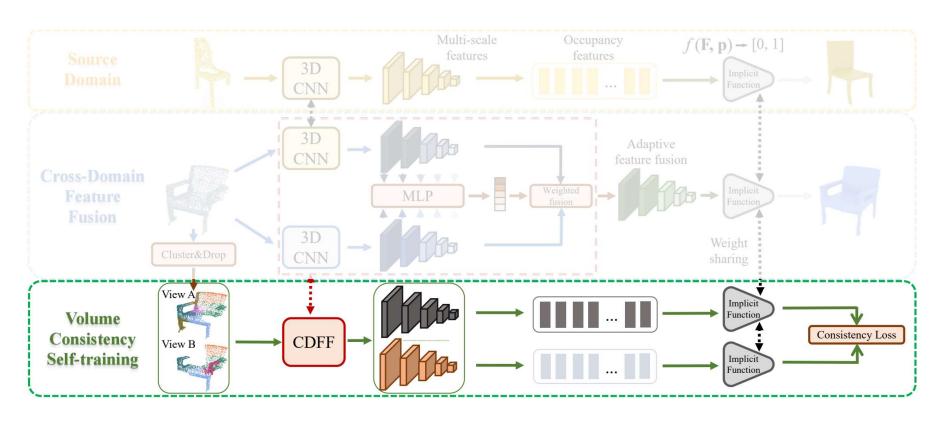

	Syn.	Real	Mesh
Chair	6,579	4,651	497
Desk	8,071	1,630	161
Sofa	3,091	428	43
Bed	233	365	36
Lamp	2,318	133	20
Car	3,514	437	43
Total	23,806	7,644	800

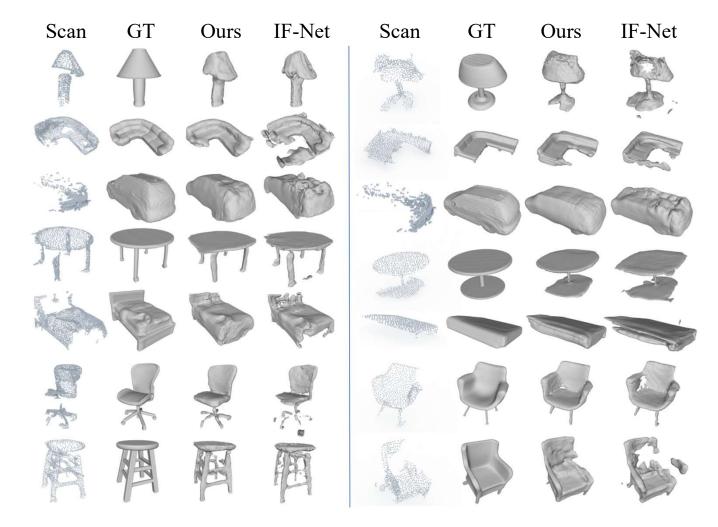
Dataset: ScanSalon


• 3D data creation


Methods


Method: Key Observation


Methods: CDFF


Methods: VCST

Results

Results

(a) Results on the 3% labels setting.

	Chair		Desk		Sofa		Bed		Lamp		Car		Average	
Method	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑
IF-Net	1.57	56.10	2.44	43.04	0.65	79.03	1.64	67.30	1.67	39.89	0.74	74.77	1.45	60.02
SelfSup	1.49	58.55	3.49	42.97	0.55	81.16	1.59	68.58	2.41	51.42	0.62	78.75	1.69	63.57
PtComp	1.61	57.33	2.16	44.26	0.51	79.90	1.52	68.23	1.95	46.97	0.59	80.35	1.39	62.84
Adversarial	1.74	58.54	2.99	46.02	0.46	81.42	1.37	71.32	2.43	56.39	0.67	78.91	1.61	65.43
Ours	1.58	60.77	2.36	48.62	0.42	82.00	1.57	73.05	1.62	58.57	0.41	80.96	1.32	67.32

(b) Results on the 5% labels setting.

	Chair		Desk		Sofa		Bed		Lamp		Car		Average	
Method	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑	CD↓	mIoU↑
IF-Net	1.88	56.98	2.14	44.87	0.50	82.04	0.66	76.05	1.72	51.33	0.52	80.13	1.24	65.23
SelfSup	2.08	59.42	2.73	46.39	0.51	82.25	0.61	77.22	1.46	62.02	0.43	81.89	1.09	68.06
PtComp	1.34	57.98	1.83	46.20	0.32	82.66	0.61	79.07	1.44	61.61	0.43	81.89	1.00	68.24
Adversarial	1.71	60.58	2.13	48.46	0.41	83.54	0.51	80.81	1.33	64.22	0.41	81.86	1.08	69.91
Ours	1.37	61.48	2.09	50.93	0.31	82.71	0.41	82.27	1.57	67.80	0.46	83.12	1.04	71.39

(c) Ablation results.

CDFF only														
VCST only	2.08	59.42	2.89	46.86	0.43	81.60	1.63	72.62	1.85	50.18	0.62	78.62	1.58	64.88

Conclusion

• Contributions:

- 1. A new task, SCoDA, is proposed, with a small dataset, ScanSalon, contributed.
- 2. A novel cross-domain feature fusion module is designed to combine the knowledge of global shapes and local patterns learned in the synthetic and real domain.
- 3. A volume-consistent self-training framework is proposed to improve the robustness of shape completion to the complex incompleteness of real scans.
- 4. Extensive experiments also demonstrate the superiority of the proposed method.

The End.

- Yushuang Wu:
- https://scholar.google.com/citations?user=x5gpN0sAAAAJ
- GAP Lab: (Generation and Analysis of Pixels, Points and Polygons)
- https://gaplab.cuhk.edu.cn

