

VideoTrack: Learning to Track Objects via Video

Fei Xie^{1*}, Lei Chu², Jiahao Li², Yan Lu² and Chao Ma¹

¹ MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University ²Microsoft Research Asia

* This work was done when Fei Xie was an intern at Microsoft Research Asia

饮水思源•爱国荣

Brief introduction

Background

Traditional Siamese matching based trackers requires sophisticated mechanisms to exploit temporal contexts

Introduction

Comparing to traditional Siamese matching network trackers:

- 2D pair-wise matching is lifted to spatiotemporal domain, encoding temporal context at the feature-level via a neat feedforward video model.
- The first to adopt Video Transformer based tracking framework.
- VideoTrack exhibits encouraging results on multiple VOT benchmarks.

Overall framework of VideoTrack

Overall architecture of video transformer model for tracking (VideoTrack). It is constructed by stacking multiple basic building units, named as triplet-block which consists of three hierarchical attention layers. Inside each layer of triplet-block, video attention module mixes the multi-branch information flows among inputs asymmetrically.

水思源•爱

Temporal modelling inside the transformer block

Three basic temporal modelling methods in the building unit with two-layer structure : (I) denotes the divided space time pattern; (II) denotes the temporal window pattern; (III) denotes the pattern with message token for temporal modelling.

饮水思源•爱国

Temporal modelling inside the transformer block

Disentangled Dual-Template Mechanism,

- Leverage the strong static appearance information from the first template and the dynamic factors of the intermediate templates through the efficient temporal modelling.
- It reduces the computation & temporal redundancy
- Propagating the appearance information more thoroughly than the message token communication.

饮水思源•爱国荣

思源•爱

Empirical study on model choices

Figure 3. Three different embedding methods. (a) separated embedding. (b) tubelet embedding. (c) combination of separated (search frame) and tubelet embedding (templates). Extensive model designs are investigated :

token embedding,

video attention scheme, temporal modelling,

varying the number of input frames,

pretraining and Foreground label map.

思源•爱

Empirical study on model choices

case	Pattern I	Pattern VI
Separate	71.3	70.6
Tubelet for t	66.4	65.8
Tubelet	65.3	63.1

Table 1. Ablations on input encoding. The performance is AO in GOT-10k [24].

case	Pattern I	Pattern VI
None	70.1	69.5
Space-only	70.5	69.8
Space-Time	71.3	70.7

Table 2. Ablations on positional embedding. The performance is AO in GOT-10k [24].

case	Pattern I	Flops	Param.
Vanilla ViT [14] Attn	71.3	67.7 G	85.4 M
VideoSwin [32] Attn	69.2	49.6 G	90.9 M
Trajectory [38] Attn	71.5	70.5 G	85.4 M

Table 3. Ablations on video attention design. The performance is AO in GOT-10k [24].

case	Pattern I	Pattern VI
None	62.1	60.5
ImageNet-1k [14]	70.4	70.2
ImageNet-21k [14]	71.2	70.8
VideoMAE [41]	64.1	63.5
MAE [21]	73.3	72.6

Table 4. Ablations on pretrain. MAE pre-training is more effective. The performance is AO in GOT-10k [24].

case	Pattern I
Label	65.3
No label	71.6

Figure 6. Ablations on foreground label. It shows the IoU curve during training and their best performance in GOT-10k [24].

VOT benchmark results

	SiamRPN++ [26]	ATOM [12]	DiMP [5]	Tr Siam [47]	TransT [7]	Stark st101 [58]	Mixformer 1k large [10]	SBT large [16]	OStrack 256 [61]	VideoTrack
AO↑	51.8	55.6	61.1	66.0	67.1	68.8	67.9	70.4	71.0	72.9
$SR_{50}\uparrow$	61.6	63.4	71.7	76.6	76.8	78.1	77.3	80.8	80.4	81.9
$SR_{75}\uparrow$	32.5	40.2	49.2	57.1	60.9	64.1	63.9	64.7	68.2	69.8

Table 7. Comparison on the GOT-10k [24] test set.

	SiamRPN++	SiamRPN++ ATOM Dil			Tr MP Siam TransT			Stark Mixformer s50 1k		Ostrack 256	VideoTrack
	[26]	[12] [5]		[55]	[47]	[47] [7]		[58]	[10]	[16]	[61]
AUC ↑	49.6	51.5	56.9	62.4	64.9	60.1	65.8	67.9	66.7	69.1	70.2
Prec [†]	49.1	50.5	56.7	60.0	69.0	-	69.7	73.9	71.1	75.2	76.4

Table 8. Comparison on the LaSOT [15] test set.

	ECO [11]	SiamFC [4]	SiamFC++ [57]	PrDiMP [13]	D3S [33]	AutoMatch [65]	TransT [7]	Stark st50 [58]	Mixformer 1k [10]	Ostrack 256 [61]	VideoTrack
AUC ↑	55.4	57.1	75.4	75.8	72.8	76.0	81.4	81.3	82.6	83.1	83.8
Norm.Prec [↑]	61.8	66.3	80.0	81.6	76.8	82.4	86.7	86.1	87.7	87.8	88.7
Prec ⁺	49.2	53.3	70.5	70.4	66.4	72.5	80.3	-	81.2	82.0	83.1

Table 9. Comparison on the TrackingNet [36] test set.

	ATOM [12]	Ocean [67]	AutoMatch [65]	SiamGAT [19]	Tr DiMP [47]	TransT [7]	Stark st50 [58]	Mixformer 1k [10]	OStrack 256 [61]	VideoTrack
AUC ↑	61.7	62.1	64.4	64.6	67.0	68.1	69.2	68.7	68.3	69.7
Prec [†]	82.7	82.3	83.8	84.3	87.6	87.6	88.2	89.5	-	89.9

Table 10. Comparison on the UAV123 [35] test set.

Figure 8. AUC and precision plots on LaSOT [15] and success plot on GOT-10k [24]. Better viewed with zooming in.

VideoTrack exhibits encouraging results on multiple VOT benchmarks, including LaSOT, GOT-10k, LaSOT and UAV123.

Qualitative results

- Over-long temporal extends do not provide more useful clues but redundancy. It is consistent with our observation that the appearance clue plays a more important role than motion clue in the matching.

- Longer video sequences can help tracker to handle the challenging scenarios, such as appearance variations, occlusion and similar distractor objects.

Qualitative results

Qualitative results

