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• Deep classifiers can always benefit from larger datasets.

Benefits from Larger Datasets
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Common Datasets
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gym

carbicycle
dog

playing violin
• Contain common 

objects
• Labeled on crowd 

source platforms
• No prior 

knowledge 
needed for the 
annotation

• Annotation is 
cheap and easy

• Can be scaled up

goldfish
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!	Heermann !	Western
!	Ring billed!	Glaucous winged

!	California

Expert Domain Datasets
• Classes are fine-grained
• Domain knowledge 

needed for the 
annotation

• Expert annotation is 
expensive and even 
inaccessible

• Difficult to be scaled up



SVCL

The Era of Big Data
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• Data volume grows exponentially.
• The difficulty is not to collect data but to label it.

Data Age 2025 report, sponsored by Seagate with data from IDC Global Datasphere, 2018
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How to Train a Good Fine-grained 
Classifier
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• In expert domains: large unlabeled + small labeled

Unlabeled
labeled
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Pseudo LabeledUnlabeled labeled

DNN

supervised

To label

Unlabeled
labeled

DNN

supervised

Unlabeled

labeled
DNN supervised

Self-supervised

classifierSupervised 
Learning Self-supervised 

Learning

Semi-supervised 
Learning
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Expert Domains
• Existing solutions

– Supervised learning
– Self-supervised learning
– Semi-supervised learning

• OK on coarse-grained but 
collapse on fine-grained

• Fine-grained differences are 
very subtle; not well 
developed
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Motivation
• Self/Semi-supervised learning try to learn from the small 

labeled data.
• Upper bounded by supervised oracle with a big gap in expert 

domains. 
• We have known that learning from large labeled data can work 

the best.
• An alternative solution - We make small labeled data bigger.
• We aim to scale up the annotation by crowd sourcing platforms

10



SVCL

Crowd Source Annotation
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• Pursue professional level pseudo labels for the unlabeled from 
crowdsourcing 

Pseudo LabeledUnlabeled labeled

DNN

supervised

To label
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A Existing solution: MEMORABLE
• Machine tEaching fraMewORk for scAlaBLe rEcognition 

(MEMORABLE)
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Wang and Vasconcelos, A new machine teaching framework for scalable recognition, ICCV 2021
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The Problems of MEMORABLE
• The difficulty and challenge of 

teaching a large amount of 
classes
– Short-term memory

• Solution: humans act as filters, 
not classifiers

13
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Inspiration
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“Beagle”

Query

Is this a    beagle?

“Yes”

DNN

“Beagle”

Query

DNN

Confidence 
> threshold 

• Pseudo-label filtering is used in 
SSL by confidence thresholding

• SSL fails in fine-grained
– bad accuracy when training set is 

small
– Poor confidence score estimation

• Replace confidence thresholding 
with human filtering
– Strong low-shot learning ability
– Strong confidence calibration 

ability
SSL SSL-HF
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Difficulties
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“Beagle”

Query

Is this a 
beagle?

DNN

• Annotators may not 
know the fine-grained 
categories.

SSL-HF
…
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Difficulties
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“Beagle”

Query

Beagle (positive)

Support set

Is this a 
beagle?

“agree”

Not Beagle (negative)

DNN

• Annotators may not 
know the fine-grained 
categories.

• Solutions
– Ask question implicitly, 

by introducing the 
support set. 
’Agree’/’Disagree’/’IDK

SSL-HF

If you agree that 
the query has the 
same class as the 
positive set?
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Difficulties
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“Beagle”

Query

Beagle (positive)

Support set

Is this a 
beagle?

“agree”

Not Beagle (negative)

DNN

• Do not need to know 
fine-grained classes

• Just need to compare 
visual similarity

• No need to teach 
annotators fine-grained 
classes

• Eliminate the short-term 
memory constraints of 
machine teaching

SSL-HF

If you agree that 
the query has the 
same class as the 
positive set?
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Difficulties
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“Beagle”

Query

Beagle (positive)

Support set

Is this a 
beagle?

“agree”

Not Beagle (negative)

DNN

• Solutions
– Ask question implicitly, 

by introducing the 
support set. 
’Agree’/’Disagree’/’IDK’

– Highlight informative 
image regions

SSL-HF

If you agree that 
the query has the 
same class as the 
positive set?
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Support Set Generation
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• Pseudo label #𝑦 = 𝑓(𝒒)
• Both sets have 𝐾 images
• Positive set: images 

sampled from training set of 
ground truth label #𝑦

• Negative set: 𝐾 images from 
𝐾 classes other than #𝑦 of 
largest probabilities in 𝑓(𝒒) 
prediction

Red bellied 

Woodpecker

Cardinal

Rose breasted 

Grosbeak

Red headed Woodpecker
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Implementation via an Iterative 
Progressive Strategy
• Predict labels for each 

example of unlabeled set

20

unlabeled

Pseudo label
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Implementation via an Iterative 
Progressive Strategy
• Predict labels for each 

example of unlabeled set
• Generate support sets for 

high-confidence examples and 
forward them to annotators

21

labeled

unlabeled

Support set Pseudo label
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Implementation via an Iterative 
Progressive Strategy
• Predict labels for each 

example of unlabeled set
• Generate support sets for 

high-confidence examples and 
forward them to annotators

• Annotators produce decisions 
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Implementation via an Iterative 
Progressive Strategy
• Predict labels for each 

example of unlabeled set
• Generate support sets for 

high-confidence examples and 
forward them to annotators

• Annotators produce decisions
• ’Agree’ examples are moved 

from the unlabeled set and 
added to the labeled set

23
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Implementation via an Iterative 
Progressive Strategy
• Predict labels for each 

example of unlabeled set
• Generate support sets for 

high-confidence examples and 
forward them to annotators

• Annotators produce decisions
• ’Agree’ examples are moved 

from the unlabeled set and 
added to the labeled set

• Update the classifier on the 
labeled set

24
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Experiments
• Datasets
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Fungi (200 categories)Birds (100 categories)
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Comparison to Machine Teaching
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• Our SSL-HF is inferior to MEMORABLE on easier tasks but 
superior on harder tasks.
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Comparison to SSL
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• SSL-HF achieves significant gain over SSL.
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Conclusion
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• Aim to scale up the annotation on expert domains.
• Proposed a crowd source annotation methods. 
• Achieved notable improvements.
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