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Semi-supervised Learning with
Human Filtering
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Benefits from Larger Datasets

« Deep classifiers can always benefit from larger datasets.
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Common Datasets

« Contain common \
¢ bJ ects goldfish T m m WT‘ playing violin

« Labeled on crowd h 2 ’(' \‘ Nal*: o e
source platforms S

* No prior
knowledge

needed for the
annotation

« Annotation is
cheap and easy

- Can be scaled up
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Expert Domain Datasets

« Classes are fine-grained

« Domain knowledge
needed for the
annotation

« Expert annotation is
expensive and even
inaccessible

 Difficult to be scaled up

i * Glaucous winged - Ring billed ‘
+ California * Heermann * Western
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The Era of Big Data

« Data volume grows exponentially.
« The difficulty is not to collect data but to label it.

/ Annual global data size
175 ZB

I

Data Age 2025 report, sponsored by Seagate with data from IDC Global Datasphere, 2018
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How to Train a Good Fine-grained
Classifier

« In expert domains: large unlabeled + small labeled
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Expert Domains
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» Existing solutions
— Supervised learning
— Self-supervised learning
— Semi-supervised learning

 OK on coarse-grained but
collapse on fine-grained

* Fine-grained differences are I I .

very subtle; not well ImageNet CUB bird Fungi

developed m semi/self-supervised
supervised oracle(upperbound)
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Motivation

« Self/Semi-supervised learning try to learn from the small
labeled data.

« Upper bounded by supervised oracle with a big gap in expert
domains.

« We have known that learning from large labeled data can work
the best.

« An alternative solution - We make small labeled data bigger.
« We aim to scale up the annotation by crowd sourcing platforms
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Crowd Source Annotation

« Pursue professional level pseudo labels for the unlabeled from
crowdsourcing

g /

o
A
/Lo tabar™ { \

I supervised

SVCL=UCSD



A Existing solution: MEMORABLE

« Machine tEaching fraMewORk for scAlaBLe rEcognition
(MEMORABLE)

:‘: . ‘, ﬂ
OR®) ©)

Wang and Vasconcelos, A new machine teaching framework for scalable recognition, ICCV 2021
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The Problems of MEMORABLE

« The difficulty and challenge of
teaching a large amount of
classes

— Short-term memory

« Solution: humans act as filters,
not classifiers
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Inspiration

« Pseudo-label filtering is

SSL by confidence thresholding

« SSL fails in fine-grained

— bad accuracy when training set is

small

— Poor confidence score estimation
« Replace confidence thresholding

with human filtering

— Strong low-shot learning ability
— Strong confidence calibration

ability

used in
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Difficulties

« Annotators may not
know the fine-grained

categories.
« Solutions “Beagle”

— Ask question implicitly, |
by introducing the
support set.
'‘Agree’/’'Disagree’/'IDK
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If you agree that
the query has the
same class as the
positive set?
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Difficulties

« Do not need to know
fine-grained classes

« Just need to compare
visual similarity

« No need to teach

annotators fine-grained

classes

« Eliminate the short-term
memory constraints of

machine teaching
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Support set

If you agree that
the query has the
same class as the
positive set?
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Difficulties — \

/ Beagle (positive) I Not Beagle (negative)
« Solutions T '
— Ask question implicitly, ) LT o Y =
by introducing the n Support set
support set. “Beagle”

'‘Agree’/'Disagree’/'IDK’ |
— Highlight informative
image regions

If you agree that
the query has the
same class as the
positive set?
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Support Set Generation

» Pseudo label y = f(q)
« Both sets have K images

» Positive set: images
sampled from training set of
ground truth label y

- Negative set: K images from
K classes other than y of
largest probabilities in f(q)
prediction
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Implementation via an Iterative

Progressive Strategy

* Predict labels for each /
example of unlabeled set

unlabeled
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Implementation via an Iterative
Progressive Strategy

« Predict labels for each /

example of unlabeled set
« Generate support sets for

high-confidence examples and
forward them to annotators
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Implementation via an Iterative
Progressive Strategy

« Predict labels for each /
example of unlabeled set

« Generate support sets for

high-confidence examples and sl
S
forward them to annotators labeled |~ .

« Annotators produce decisions

agree
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Implementation via an Iterative
Progressive Strategy

 Predict labels for each /
example of unlabeled set
« Generate support sets for

high-confidence examples and
forward them to annotators

« Annotators produce decisions

« ‘Agree’ examples are moved Support set Pseudo label
from the unlabeled set and
added to the labeled set

agree
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Implementation via an Iterative
Progressive Strategy

 Predict labels for each /
example of unlabeled set
« Generate support sets for

high-confidence examples and
forward them to annotators

« Annotators produce decisions

« ‘Agree’ examples are moved Support set Pseudo label
from the unlabeled set and
added to the labeled set

« Update the classifier on the
labeled set

agree
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Experiments

« Datasets

Birds (100 categories) Fungi (200 categories)
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Comparison to Machine Teaching
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* Our SSL-HF is inferior to MEMORABLE on easier tasks but
superior on harder tasks.
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Conclusion

« Aim to scale up the annotation on expert domains.
» Proposed a crowd source annotation methods.
« Achieved notable improvements.
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