

🔿 Meta Al

Scaling Language-Image Pre-training via Masking

<u>Yanghao Li</u>*, Haoqi Fan*, Ronghang Hu*, Christoph Feichtenhofer[†], Kaiming He[†] Meta AI, FAIR

Paper Tag: **THU-PM-266** Poster date: June 22, 2023

https://github.com/facebookresearch/flip

Fast Language-Image Pre-training (FLIP)

- A simple method for *efficient* CLIP training via *Masking*
 - Randomly masking out image patches with a *high masking ratio*

FLIP Overview

- Benefits from masking
 - See more sample pairs under the same wall-clock training time
 - Contrast more sample pairs by larger batches under similar memory constraint

Properties of FLIP – Image Masking

• Image masking yields higher or comparable accuracy and speeds up training

mask	batch	FLOPs	time	acc.
0%	16k	$1.00 \times$	$1.00 \times$	68.6
50%	32k	$0.52 \times$	$0.50 \times$	69.6
75%	64k	$0.28 \times$	$0.33 \times$	68.2

Properties of FLIP – Batch Size

• A large batch has big gains over smaller batches

batch	mask 50%	mask 75%
16k	68.5	65.8
32k	69.6	67.3
64k	70.4	68.2

Properties of FLIP – Unmasked tuning

• A short tuning (0.32 epoch) greatly reduce distribution gap

	mask 50%	mask 75%
baseline	69.6	68.2
+ tuning	70.1	69.5

• Zero-shot ImageNet accuracy

case	data	epochs	B/16	L/16	L/14	H/14
CLIP [52]	WIT-400M	32	68.6	-	75.3	-
OpenCLIP [36]	LAION-400M	32	67.1	-	72.8	-
CLIP, our repro.	LAION-400M	32	32 68.2 72.4		73.1	-
FLIP	LAION-400M	32	68.0	74.3	74.6	75.5
	For ViT-L/14, FLIP is <i>b</i> reproduced CLIP	<i>etter</i> than bo pre-trained o	th OpenCL In the <i>same</i>	IP and ou e data	r	

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." *ICML, 2021* Ilharco, Gabriel, et al. OpenCLIP." 2021

)

Linear-probing and fine-tuning on ImageNet

case	data	epochs	model	zero-shot	linear probe	fine-tune
CLIP [52]	WIT-400M	32	L/14	75.3	83.9 [†]	-
CLIP [52], our transfer	WIT-400M	32	L/14	75.3	83.0	87.4
OpenCLIP [36]	LAION-400M	32	L/14	72.8	82.1	86.2
CLIP, our repro.	LAION-400M	32	L/16	72.4	82.6	86.3
FLIP	LAION-400M	32	L/16	74.3	83.6	86.9

FLIP outperforms OpenCLIP and CLIP counterparts pre-trained on the same data

• FLIP performs better on zero-shot image/text retrieval

			text retrieval					image retrieval						
			1	Flickr30k			COCO			Flickr30k			COCO	
case	model	data	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
CLIP [52]	L/14@336	WIT-400M	88.0	98.7	99.4	58.4	81.5	88.1	68.7	90.6	95.2	37.8	62.4	72.2
CLIP [52], our eval.	L/14@336	WIT-400M	88.9	98.7	99.9	58.7	80.4	87.9	72.5	91.7	95.2	38.5	62.8	72.5
CLIP [52], our eval.	L/14	WIT-400M	87.8	99.1	99.8	56.2	79.8	86.4	69.3	90.2	94.0	35.8	60.7	70.7
OpenCLIP [36], our eval.	L/14	LAION-400M	87.3	97.9	99.1	58.0	80.6	88.1	72.0	90.8	95.0	41.3	66.6	76.1
CLIP, our impl.	L/14	LAION-400M	87.4	98.4	99.5	59.1	82.5	89.4	74.4	92.2	95.5	43.2	68.5	77.5
FLIP	L/14	LAION-400M	89.1	98.5	99.6	60.2	82.6	89.9	75.4	92.5	95.9	44.2	69.2	78.4

• FLIP performs better on image captioning and visual question answering

				CC	noc	VQAv2				
case	model	data	BLEU-4	METEOR	ROUGE-L	CIDEr	SPICE	CIDEr	SPICE	acc.
CLIP [52], our transfer	L/14	WIT-400M	37.5	29.6	58.7	126.9	22.8	82.5	12.1	76.6
OpenCLIP [36], our transfer	L/14	LAION-400M	36.7	29.3	58.4	125.0	22.7	83.4	12.3	74.5
CLIP, our repro.	L/16	LAION-400M	36.4	29.3	58.4	125.6	22.8	82.8	12.2	74.5
FLIP	L/16	LAION-400M	37.4	29.5	58.8	127.7	23.0	85.9	12.4	74.7

Scaling Behavior of FLIP

• The speed-up of FLIP facilitates scaling explorations

				zero-shot transfer				transfer learning					
				zero-shot	text ret	ieval image retrieval		lin-probe	fine-tune	captio	oning	vqa	
case	model	data	sampled	IN-1K	Flickr30k	COCO	Flickr30k	COCO	IN-1K	IN-1K	COCO	nocaps	VQAv2
baseline	Large	400M	12.8B	74.3	88.4	59.8	75.0	44.1	83.6	86.9	127.7	85.9	74.7
model scaling	Huge	400M	12.8B	75.5	89.2	62.8	76.4	46.0	84.3	87.3	130.3	91.5	76.3
data scaling	Large	2B	12.8B	75.8	91.7	63.8	78.2	47.3	84.2	87.1	128.9	87.0	75.5
schedule scaling	Large	400M	25.6B	73.9	89.7	60.1	75.5	44.4	83.7	86.9	127.9	86.8	75.0

Model and data scaling consistently outperform baselines

- Data scaling is favored for zero-shot transfer
- Model scaling is favored for transfer learning

Model scaling: ViT-L to ViT-H (~2x params)

Data scaling: LAION-400M to LAION-2B (image-text puirs)

Schedule scaling: 12.8B sampled data to 25.6B

Scaling Behavior of FLIP

• The speed-up of FLIP facilitates scaling explorations

				zero-shot transfer				transfer learning					
				zero-shot	text retr	text retrieval image retrieval		lin-probe	fine-tune	captio	oning	vqa	
case	model	data	sampled	IN-1K	Flickr30k	COCO	Flickr30k	COCO	IN-1K	IN-1K	COCO	nocaps	VQAv2
baseline	Large	400M	12.8B	74.3	88.4	59.8	75.0	44.1	83.6	86.9	127.7	85.9	74.7
model scaling	Huge	400M	12.8B	75.5	89.2	62.8	76.4	46.0	84.3	87.3	130.3	91.5	76.3
data scaling	Large	2B	12.8B	75.8	91.7	63.8	78.2	47.3	84.2	87.1	128.9	87.0	75.5
schedule scaling	Large	400M	25.6B	73.9	89.7	60.1	75.5	44.4	83.7	86.9	127.9	86.8	75.0
model+data scaling	Huge	2B	12.8B	77.6	92.8	67.0	79.9	49.5	85.1	87.7	130.4	92.6	77.1
joint scaling	Huge	2 B	25.6B	78.8	93.1	67.8	80.9	50.5	85.6	87.9	130.2	91.2	77.3

- Model and data scaling are highly complementary
 - Scaling both (+3.3%) > model + data scaling alone (+1.2% + 1.5%)
- Joint scaling with schedule scaling leads to the best in most cases

Scaling Language-Image Pre-training via Masking

Yanghao Li*, Haoqi Fan*, Ronghang Hu*, Christoph Feichtenhofer[†], Kaiming He[†] Meta AI, FAIR

Paper Tag: **THU-PM-266** Poster date: June 22, 2023

https://github.com/facebookresearch/flip

