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Fast Language-Image Pre-training (FLIP)
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● A simple method for efficient CLIP training via Masking 
○ Randomly masking out image patches with a high masking ratio
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FLIP Overview
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● Benefits from masking
○ See more sample pairs under the same wall-clock training time

○ Contrast more sample pairs by larger batches under similar memory constraint
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Properties of FLIP – Image Masking
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● Image masking yields higher or comparable accuracy and speeds up training



Properties of FLIP – Batch Size
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● A large batch has big gains over smaller batches



Properties of FLIP – Unmasked tuning

6

● A short tuning (0.32 epoch) greatly reduce distribution gap



FLIP Results
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● Zero-shot ImageNet accuracy

For ViT-L/14, FLIP is better than both OpenCLIP and our 
reproduced CLIP pre-trained on the same data

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021
Ilharco, Gabriel, et al. OpenCLIP."  2021



FLIP Results
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● Linear-probing and fine-tuning on ImageNet

FLIP outperforms OpenCLIP and CLIP counterparts 
pre-trained on the same data



FLIP Results

● FLIP performs better on zero-shot image/text retrieval
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FLIP Results

● FLIP performs better on image captioning and visual question answering
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Scaling Behavior of FLIP
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Model and data scaling consistently outperform baselines

• Data scaling is favored for zero-shot transfer 

• Model scaling is favored for transfer learning

Model scaling: ViT-L to ViT-H (~2x params)

Data scaling: LAION-400M to LAION-2B (image-text pairs)

Schedule scaling: 12.8B sampled data to 25.6B

● The speed-up of FLIP facilitates scaling explorations



Scaling Behavior of FLIP
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● The speed-up of FLIP facilitates scaling explorations

• Model and data scaling are highly complementary 
• Scaling both (+3.3%) > model + data scaling alone (+1.2% + 1.5%)

• Joint scaling with schedule scaling leads to the best in most cases
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