

DEPGRAPH: TOWARDS ANY STRUCTURAL PRUNING

Gongfan Fang¹ Xinyin Ma¹ Mingli Song³ Michael Bi Mi² Xinchao Wang¹ ¹National University of Singapore ²Huawei Technologies Ltd. ³Zhejiang University

Poster ID: WED-PM-356 Paper ID: 1159

Any Structural Pruning

Grouping: The challenge in Any Structural Pruning

Challenge: The grouping patterns vary widely across different models

Figure 2. Grouped parameters with inter-dependency in different structures. All highlighted parameters must be pruned simultaneously.

These dependencies make it difficult to prune different networks

Introducing DepGraph

DepGraph: an automatic pipeline for structural pruning

1. build dependency graph for resnet18 1. Building DepGraph
DG = tp.DependencyGraph().build_dependency(model, example_inputs=torch.randn(1,3,224,224))

2. grouping parameters 2. Grouping
pruning_group = DG.get_pruning_group(model.conv1, tp.prune_conv_out_channels, idxs=[2, 6, 9])

3. remove parameters
pruning_group.exec()

3. Pruning

Manual Pruning (ICCV):

for layer_id in range(len(old_modules)):

V.S.

```
m0 = old_modules[layer_id]
m1 = new modules[layer id]
if isinstance(m0, nn.BatchNorm2d):
    idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
    if idx1.size == 1:
        idx1 = np.resize(idx1,(1,))
    if isinstance(old_modules[layer_id + 1], channel_selection):
        # If the next layer is the channel selection layer, then the current batchnorm 2d layer won't be pruned.
        m1.weight.data = m0.weight.data.clone()
        m1.bias.data = m0.bias.data.clone()
        m1.running_mean = m0.running_mean.clone()
        m1.running_var = m0.running_var.clone()
        # We need to set the channel selection layer.
        m2 = new modules[laver id + 1]
        m2.indexes.data.zero ()
        m2.indexes.data[idx1.tolist()] = 1.0
        layer_id_in_cfg += 1
        start_mask = end_mask.clone()
        if layer_id_in_cfg < len(cfg_mask):</pre>
           end_mask = cfg_mask[layer_id_in_cfg]
    else:
        m1.weight.data = m0.weight.data[idx1.tolist()].clone()
        m1.bias.data = m0.bias.data[idx1.tolist()].clone()
        m1.running_mean = m0.running_mean[idx1.tolist()].clone()
        m1.running_var = m0.running_var[idx1.tolist()].clone()
        layer_id_in_cfg += 1
        start_mask = end_mask.clone()
        if layer_id_in_cfg < len(cfg_mask): # do not change in Final FC</pre>
           end_mask = cfg_mask[layer_id_in_cfg]
elif isinstance(m0, nn.Conv2d):
    if conv_count == 0:
       m1.weight.data = m0.weight.data.clone()
        conv count += 1
        continue
    if isinstance(old_modules[layer_id-1], channel_selection) or isinstance(old_modules[layer_id-1], nn.BatchNorm2d):
        # This convers the convolutions in the residual block.
        # The convolutions are either after the channel selection layer or after the batch normalization layer.
        conv count += 1
        idx0 = np.squeeze(np.argwhere(np.asarray(start mask.cpu().numpy())))
        idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
        print('In shape: {:d}, Out shape {:d}.'.format(idx0.size, idx1.size))
        if idx0.size == 1:
            idx0 = np.resize(idx0, (1,))
        if idx1.size == 1:
           idx1 = np.resize(idx1, (1,))
        w1 = m0.weight.data[:, idx0.tolist(), :, :].clone()
        # If the current convolution is not the last convolution in the residual block, then we can change the
        # number of output channels. Currently we use `conv_count` to detect whether it is such convolution.
        if conv_count % 3 != 1:
           w1 = w1[idx1.tolist(), :, :, :].clone()
        m1.weight.data = w1.clone()
        continue
    # We need to consider the case where there are downsampling convolutions.
    # For these convolutions, we just copy the weights.
    m1.weight.data = m0.weight.data.clone()
elif isinstance(m0, nn.Linear):
    idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
    if idx0.size == 1:
        idx0 = np.resize(idx0, (1,))
    m1.weight.data = m0.weight.data[:, idx0].clone()
    m1.bias.data = m0.bias.data.clone()
```

G Formalizing the grouping step:

Finding a grouping graph G so that

$$G_{ij} = \begin{cases} 1, & \text{if layer i, j in the same group} \\ 0, & \text{otherwise} \end{cases}$$

Issue: no empirical and explicit rule for building this graph

Grouping graph of ViT-Base

Our solution: Dependency Graph

Leveraging the transitive property of dependency for simplification (transitive reduction):

Different pruning schemes for inputs & outputs

Remove input channels

Remove output channels

□ Modeling local dependency

Algorithms

Algorithm 1: Dependency Graph Input: A neural network $\mathcal{F}(x; w)$ Output: DepGraph $D(\mathcal{F}, E)$ $f^- = \{f_1^-, f_2^-, ..., f_L^-\}$ decomposed from the \mathcal{F} $f^+ = \{f_1^+, f_2^+, ..., f_L^+\}$ decomposed from the \mathcal{F} Initialize DepGraph $D = \mathbf{0}_{2L \times 2L}$ for $i = \{0, 1, ..., L\}$ do | for $j = \{0, 1, ..., L\}$ do | for $j = \{0, 1, ..., L\}$ do | $D(f_i^-, f_j^+) = D(f_j^+, f_i^-) =$ $\underbrace{\mathbb{1} \left[f_i^- \leftrightarrow f_j^+ \right]}_{Inter-layer Dep} \lor \underbrace{\mathbb{1} \left[i = j \land sch(f_i^-) = sch(f_j^+) \right]}_{Intra-layer Dep}$ return D

Algorithm 2: Grouping

```
Input: DepGraph D(\mathcal{F}, E)

Output: Groups G

G = \{\}

for i = \{1, 2, ..., \|\mathcal{F}\|\} do

\left|\begin{array}{c}g = \{i\}\\ \mathbf{repeat}\\ \\ g' = \{j \in \text{UNSEEN} | \exists k \in g, D_{kj} = 1\}\\ \\ g = g \cup g'\\ \\ until g' = \emptyset;\\ \\ G = G \cup \{g\}\\ \\ return G\end{array}\right|
```


Figure 3. Layer grouping is achieved via a recursive propagation on DepGraph, starting from the red scissor. DepGraph not only collects coupled layers, but also show coupling relation between layers as well as pruning schemes for different layers.

Generalizing DepGraph to

- Vision Transformers -
- **RNNs** -
- YOLO v7 / YOLO v8
- LLMs -

. . .

- HuggingFace Diffusers _
- TorchVision Models (95%) -

 f_5

Figure 2. Pruning of Vision Transformers

Figure 3. Pruning of LSTM. The input connections are eliminated for simplicity as they are not affected in this case.

Group Importance v.s. Layer Importance

(a) Unstructural Sparsity

(b) Structural but Inconsistent Sparsity

(c) Consistent Structural Sparsity

Figure 4. Learning different sparsity schemes to estimate the importance of grouped parameters. Method (a) is used in unstructural pruning which only focuses on the importance of single weight. Method (b) learns structurally sparse layers [31], but ignores coupled weights in other layers. Our method as shown in (c) learns group sparsity which forces all coupled parameters to zero, so that they can be easily distinguished by a simple magnitude method.

$$\mathcal{R}(g,k) = \sum_{w \in w_g[k]} \gamma_k \|w\|_2^2$$
 Assigning different weights γ to different groups

Experiments

Pruning results on CIFAR & ImageNet

Model / Data	Method	Base	Pruned	Δ Acc.	Speed Up
ResNet56 CIFAR10	NISP [<mark>64</mark>]	-	-	-0.03	1.76×
	Geometric [19]	93.59	93.26	-0.33	$1.70 \times$
	Polar [68]	93.80	93.83	+0.03	$1.88 \times$
	CP [27]	92.80	91.80	-1.00	2.00 imes
	AMC [18]	92.80	91.90	-0.90	2.00 imes
	HRank [29]	93.26	92.17	-0.09	2.00 imes
	SFP [17]	93.59	93.36	-0.23	$2.11 \times$
	ResRep [6]	93.71	93.71	+0.00	2.12 ×
	Ours w/o SL	93.53	93.46	-0.07	$2.11 \times$
	Ours	93.53	93.77	+0.24	$2.11 \times$
	GBN ([<mark>61</mark>])	93.10	92.77	-0.33	2.51×
	AFP ([5])	93.93	92.94	-0.99	$2.56 \times$
	C-SGD ([3])	93.39	93.44	+0.05	$2.55 \times$
	GReg-1 ([52])	93.36	93.18	-0.18	$2.55 \times$
	GReg-2 ([52])	93.36	93.36	-0.00	$2.55 \times$
	Ours w/o SL	93.53	93.36	-0.17	$2.51 \times$
	Ours	93.53	93.64	+0.11	2.57 ×
VGG19 CIFAR100	OBD ([51])	73.34	60.70	-12.64	5.73×
	OBD ([51])	73.34	60.66	-12.68	$6.09 \times$
	EigenD ([51])	73.34	65.18	-8.16	8.80 imes
	GReg-1 ([52])	74.02	67.55	-6.67	$8.84 \times$
	GReg-2 ([52])	74.02	67.75	-6.27	$8.84 \times$
	Ours w/o SL	73.50	67.60	-5.44	$8.87 \times$
	Ours	73.50	70.39	-3.11	8.92 ×

Table 1. Pruning results on CIFAR-10 and CIFAR-100.

Arch.	Method	Base	Pruned	Δ Acc.	MACs
	ResNet-50	76.15	-	-	4.13
	ThiNet [35]	72.88	72.04	-0.84	2.44
	SSS [23]	76.12	74.18	-1.94	2.82
	SFP [17]	76.15	74.61	-1.54	2.40
	AutoSlim [63]	76.10	75.60	-0.50	2.00
20	FPGM [19]	76.15	75.50	-0.65	2.38
et-	Taylor [38]	76.18	74.50	-1.68	2.25
N.S.	Slimable [62]	76.10	74.90	-1.20	2.30
Re	CCP [41]	76.15	75.50	-0.65	2.11
	AOFP-C1 [4]	75.34	75.63	+0.29	2.58
	TAS [8]	77.46	76.20	-1.26	2.31
	GFP [30]	76.79	76.42	-0.37	2.04
	GReg-2 [52]	76.13	75.36	-0.77	2.77
	Ours	76.15	75.83	-0.32	1.99
DenseNet-121	DenseNet-121	74.44	-	-	2.86
	PSP-1.38G [45]	74.35	74.05	-0.30	1.38
	PSP-0.58G [45]	74.35	70.34	-4.01	0.58
	Ours-1.38G	74.44	73.98	-0.46	1.37
	Ours-0.58G	74.44	70.13	-4.31	0.57
	Mob-v2	71.87	-	-	0.33
2	NetAdapt [58]	-	70.00	-	0.24
-q	Meta [32]	74.70	68.20	-6.50	0.14
Mo	GFP [30]	75.74	69.16	-6.58	0.15
	Ours	71.87	68.46	-3.41	0.15
NeXt-50	ResNeXt-50	77.62	-	-	4.27
	SSS [23]	77.57	74.98	-2.59	2.43
	GFP [30]	77.97	77.53	-0.44	2.11
	Ours	77.62	76.48	-1.14	2.09
ViT-B/16	VIT-B/16	81.07	-	-	17.6
	CP-ViT [47]	77.91	77.36	-0.55	11.7
	Ours+EMA	81.07	79.58	-1.39	10.4
	Ours	81.07	79.17	-1.90	10.4

Table 3. Pruning results on ImageNet.

Experiments

Text, 3D point cloud, graph and more

Most users think their computer is safe from adware and spyware--but they're wrong. A survey conducted by Internet service provider America Online found that 20 percent of home computers were infected by

Protein-protein interaction (PPI)

Arch. & Data	Method	Base	Pruned	$ \Delta$	Speedup
LSTM	DepGraph+Random	92.10	91.23	-0.87	$16.28 \times$
	DepGraph+CP [27]	92.10	91.50	-0.60	$16.28 \times$
(AGNews)	Ours w/o SL	92.10	91.53	-0.57	$16.28 \times$
	Ours	92.10	91.75	-0.35	$16.28 \times$
	DepGraph+Random	92.10	91.05	-1.05	$10.05 \times$
DGCNN (ModelNet40)	DepGraph+CP [27]	92.10	91.00	-1.10	$10.05 \times$
	DepGraph+Slim [31]	92.10	91.74	-0.36	$10.35 \times$
	Ours w/o SL	92.10	91.86	-0.24	$11.46 \times$
	Ours	92.10	92.02	-0.08	11.98×
GAT (PPI)	DepGraph+Random	0.986	0.951	-0.035	$8.05 \times$
	DepGraph+CP [27]	0.986	0.957	-0.029	$8.05 \times$
	Ours w/o SL	0.986	0.953	-0.033	$8.26 \times$
	Ours	0.986	0.961	-0.025	8.43×

Table 4. Pruning neural networks for non-image data, including AGNews (text), ModelNet (3D Point Cloud) and PPI (Graph). We report the classification accuracy (%) of pruned model for AG-News and ModelNet and micro-F1 score for PPI.

Experiments

DepGraph & the derived Grouping Graph

Figure 5. Dependency graphs (top) and the derived grouping schemes (bottom) for different neural networks.

Figure 7. Dependency graphs (top) and the derived grouping schemes (bottom) for different neural networks

Projects

Pruning in 3 lines

```
# 1. build dependency graph for resnet18
DG = tp.DependencyGraph().build_dependency(model, example_inputs=torch.randn(1,3,224,224))
```

2. grouping parameters
pruning_group = DG.get_pruning_group(model.conv1, tp.prune_conv_out_channels, idxs=[2, 6, 9])

3. remove parameters
pruning_group.exec()

Grouping Example: pruning resnet18.conv1

[<DEP: prune conv => prune conv on conv1 (Conv2d(3, 64, kernel size=(7, 7), stride=(2, 2), padding=(3, 3), b <DEP: prune conv => prune batchnorm on bn1 (BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track run [<DEP: prune batchnorm => prune elementwise op on ElementWiseOp()>, Index=[2, 6, 9], NumPruned=0] <DEP: prune elementwise op => prune elementwise op on ElementWiseOp()>, Index=[2, 6, 9], NumPruned=0] <DEP: prune elementwise op => prune related conv on layer1.0.conv1 (Conv2d(64, 64, kernel size=(3, 3), str <DEP: _prune_elementwise_op => _prune_elementwise_op on _ElementWiseOp()>, Index=[2, 6, 9], NumPruned=0] <DEP: prune elementwise op => prune batchnorm on layer1.0.bn2 (BatchNorm2d(64, eps=1e-05, momentum=0.1, af <DEP: prune batchnorm => prune conv on layer1.0.conv2 (Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), pa OUTE: prune elementwise op => prune elementwise op on ElementWiseOp()>, Index=[2, 6, 9], NumPruned=0] [<DEP: prune elementwise op => prune related conv on layer1.1.conv1 (Conv2d(64, 64, kernel size=(3, 3), str [<DEP: prune elementwise op => prune elementwise op on ElementWiseOp()>, Index=[2, 6, 9], NumPruned=0] [<DEP: prune elementwise op => prune batchnorm on layer1.1.bn2 (BatchNorm2d(64, eps=1e-05, momentum=0.1, af [<DEP: prune batchnorm => prune conv on layer1.1.conv2 (Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), pa [<DEP: prune elementwise op => prune elementwise op on ElementWiseOp()>, Index=[2, 6, 9], NumPruned=0] [<DEP: prune elementwise op => prune related conv on layer2.0.conv1 (Conv2d(64, 128, kernel size=(3, 3), st [<DEP: prune elementwise op => prune related conv on layer2.0.downsample.0 (Conv2d(64, 128, kernel size=(1, 11211 parameters will be pruned -----

TORCH PRUNING

Torch-Pruning Public

::

[CVPR-2023] Towards Any Structural Pruning; LLaMA / YOLOv8 / CNNs / Transformers

● Python 🟠 1.1k 😵 178

Conclusion

DepGraph: a simple way to prune any neural network

Thanks for Watching