

Aligning Bag of Regions for Open-Vocabulary Object Detection

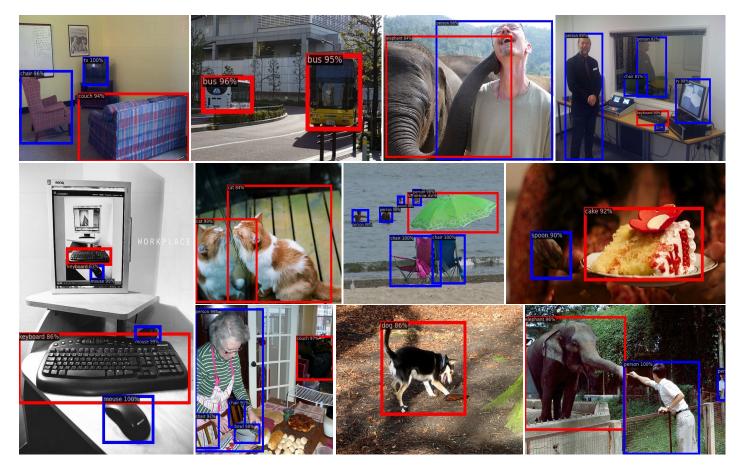
Size Wu¹ Wenwei Zhang¹ Sheng Jin^{2,3} Wentao Liu^{3,4} Chen Change Loy^{1*}
¹S-Lab, Nanyang Technological University ² The University of Hong Kong
³ SenseTime Research and Tetras.AI ⁴ Shanghai AI Laboratory
{size001, wenwei001, ccloy}@ntu.edu.sg {jinsheng, liuwentao}@sensetime.com

Paper Tag: WED-PM-276

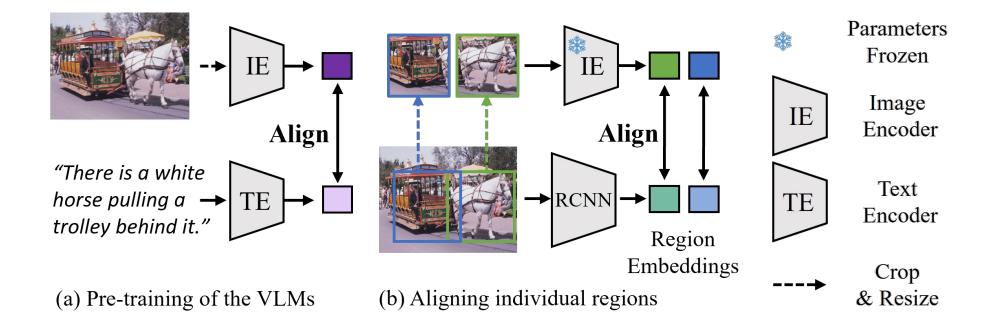
Outline

- Introduction
- Method
- Experiment

Outline


- Introduction
- Method
- Experiment

• Open-vocabulary Object Detection


Detecting objects of novel categories unseen in the training phase.

Introduction

• Distillation-based Methods

Individually align region embeddings to the corresponding features extracted from the Vison-Language Models (VLMs), e.g., CLIP.

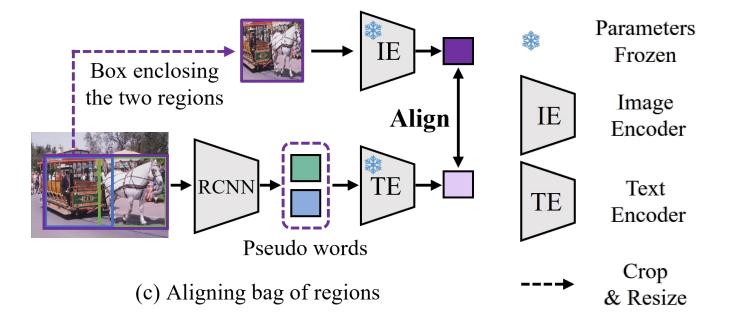
Introduction

• Analysis

"There is a desk." (0.265) "There is a desk with a monitor." (0.277) "There is a desk with a monitor and keyboard." (0.283) "There is a desk with a monitor, keyboard and mouse." (0.294)

"There is a black motorcycle." (0.272) "There is a black motorcycle parked on the road." (0.279) "There are a black motorcycle and a car parked on the road." (0.295) "There is a black motorcycle parked on the road in front of a car." (0.304)

The VLMs can capture the co-occurrence of objects.



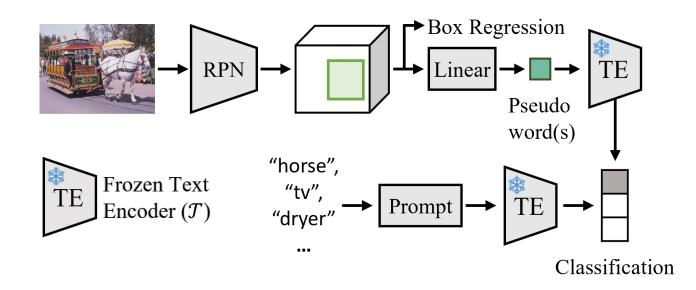
Introduction

Ę

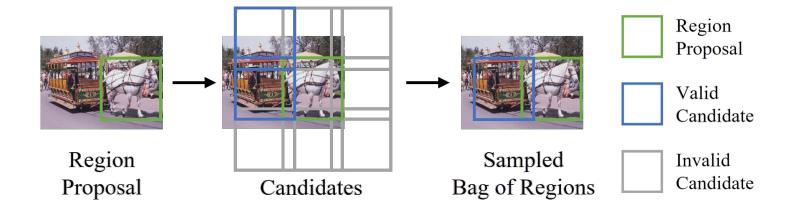
• Ours: Aligning Bag of Regions (BARON)

- Regard regions as words
- Mimic the bag-of-words representation of a sentence
- Form a bag of regions to obtain a sentence-like representation

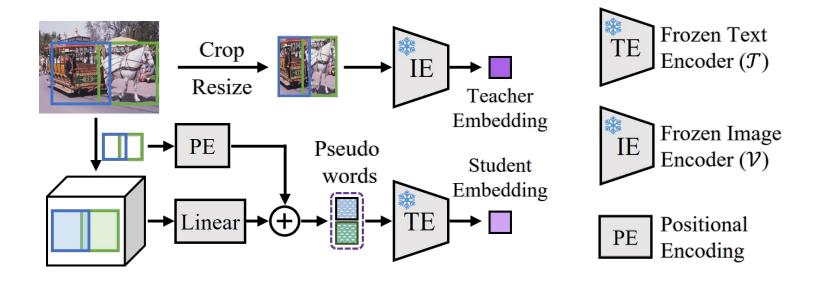
Outline


- Introduction
- Method
- Experiment

• The Open-vocabulary Detector

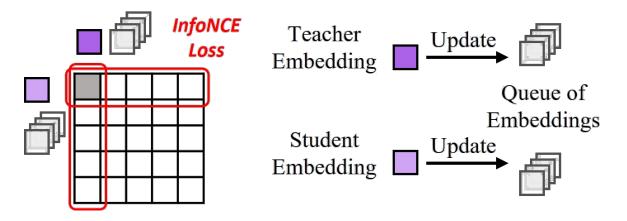

For inference and training on base categories

• Forming Bag of Regions

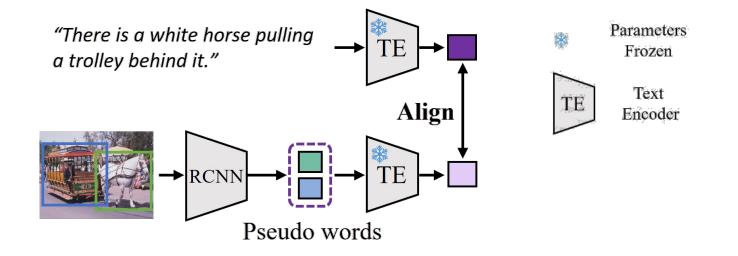

- Start from region proposals
- Sample surrounding (neighboring) region boxes with equal box sizes

■ Method

• Representing Bag of Regions


- Student Embedding: Add positional embeddings to the pseudo words, concatenate, and send to the *Text Encoder*
- Teacher Embedding: Send image crop to the *Image Encoder*

• Aligning Bag of Regions


- Adopt contrastive learning
- Keep queues of embeddings to provide sufficient negative teacher-student embedding pairs

• Caption Supervision

Use the text embedding of image caption as teacher embedding

- Introduction
- Method
- Experiment

• OV-COCO Benchmark

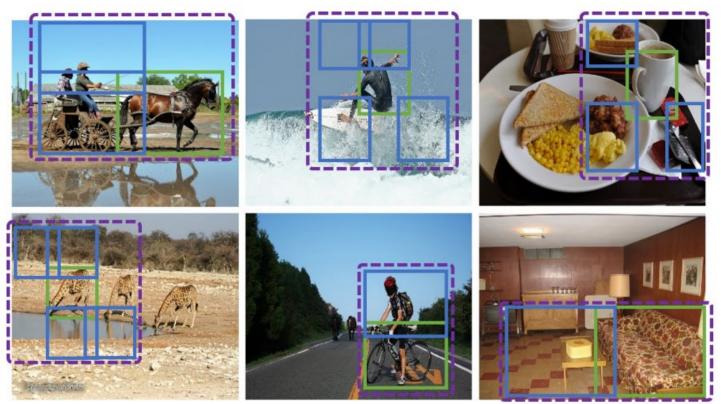
Method	Supervision	Backbone Detector		AP ^{novel}	AP_{50}^{base}	AP_{50}
ViLD [15]	CLIP	ResNet50-FPN	FasterRCNN	27.6	59.5	51.2
OV-DETR [52]	CLIP	ResNet50	DeformableDETR	29.4	61.0	52.7
BARON (Ours)	CLIP	ResNet50-FPN	FasterRCNN	34.0	60.4	53.5
OVR-CNN [53]	Caption	ResNet50-C4	FasterRCNN	22.8	46.0	39.9
RegionCLIP [56]	Caption	ResNet50-C4	FasterRCNN	26.8	54.8	47.5
Detic [58]	Caption	ResNet50-C4	FasterRCNN	27.8	51.1	45.0
PB-OVD [13]	Caption	ResNet50-C4	FasterRCNN	30.8	46.1	42.1
VLDet [28]	Caption	ResNet50-C4	FasterRCNN	32.0	50.6	45.8
BARON (Ours)	Caption	ResNet50-C4	FasterRCNN	33.1	54.8	49.1
Rasheed <i>et al.</i> $[41]^{\dagger}$	CLIP + Caption	ResNet50-C4	FasterRCNN	36.6	54.0	49.4
BARON (Ours) [†]	CLIP + Caption	ResNet50-C4	FasterRCNN	42.7	54.9	51.7

• OV-LVIS Benchmark

Method	Encomble	L comed Dromat	0	oject I	Detecti	on	Instance segmentation				
	Ensemble	Learned Prompt	AP_r	AP_c	AP_f	AP	AP_r	AP_c	AP_f	AP	
ViLD [15]	-	-	16.3	21.2	31.6	24.4	16.1	20.0	28.3	22.5	
OV-DETR [52]	-	-	-	-	-	-	17.4	25.0	32.5	26.6	
BARON (Ours)	-	-	17.3	25.6	31.0	26.3	18.0	24.4	28.9	25.1	
ViLD [15]	\checkmark	-	16.7	26.5	34.2	27.8	16.6	24.6	30.3	25.5	
ViLD* [15]	\checkmark	-	17.4	27.5	31.9	27.5	16.8	25.6	28.5	25.2	
BARON (Ours)	\checkmark	-	20.1	28.4	32.2	28.4	19.2	26.8	29.4	26.5	
DetPro [10]	\checkmark	\checkmark	20.8	27.8	32.4	28.4	19.8	25.6	28.9	25.9	
BARON (Ours)	✓	✓	23.2	29.3	32.5	29.5	22.6	27.6	29.8	27.6	

Experiment

• Transfer Results


Method	Pascal VOC			COCO				Objects365						
	AP ₅₀	AP_{75}	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l
Supervised [10]	78.5	49.0	46.5	67.6	50.9	27.1	67.6	77.7	25.6	38.6	28.0	16.0	28.1	36.7
ViLD* [15]	1								1					
BARON (Ours) [‡]	74.5	57.9	36.3	56.1	39.3	25.4	39.5	48.2	13.2	20.0	14.0	4.8	12.7	20.1
DetPro [10]	74.6	57.9	34.9	53.8	37.4	22.5	39.6	46.3	12.1	18.8	12.9	4.5	11.5	18.6
BARON (Ours)	76.0	58.2	36.2	55.7	39.1	24.8	40.2	47.3	13.6	21.0	14.5	5.0	13.1	20.7

Experiment

- Visualization
 - Bag of Regions



- Visualization
 - Featuremap Response

Ours

Baseline

Ours

Baseline

Ours

Baseline

- Visualization
 - Image-based Inference

Thanks for listening!

