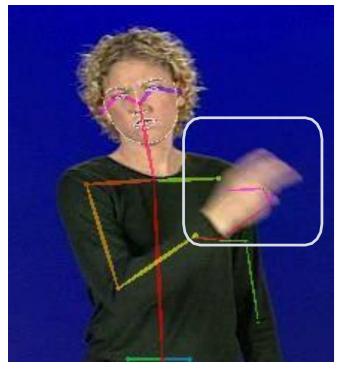


Scan me for code and data! forte@is.mpg.de

Goal


Reconstruct expressive 3D avatars from monocular sign-language (SL) video of isolated signs.

Input frame

Problem

Current pose-estimation methods struggle with SL video due to difficult hand occlusions and motion blur caused by the fast hand movements that are typical of SL.

Keypoint detection

Model fitting with SMPLify-SL (SMPLify-X¹ for SL)

Key Idea

Leverage linguistic rules of SL to develop novel priors that help disambiguate hand poses in SL videos.

Model fitting with **SGNify**

Method

Input frame

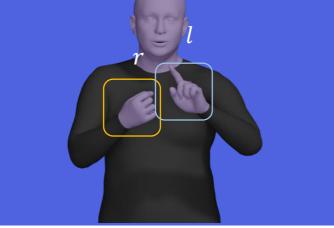
```
L_s =
```

 $L_h =$

We introduce eight sign-group classes and apply the linguistic constraints that are active for the detected class.

Class	Symmetry	Invariance				Invariance	
		Dominant	Non-dominant	Class	Symmetry	Dominant	Non-dominant
0a	X	static	X	0b	X	transitioning	X
1a		static	static	1b		transitioning	transitioning
2a		static	static	2b	×	transitioning	static
3a		static	static	3b	X	transitioning	static

0a	
1a	
2a	
3a	


imprs-is

Acknowledgments: We thank the Perceiving Systems Data Team and the MPI-IS Optics and Sensing Lab for their support in capturing the dataset. ¹ Pavlakos et al., SMPLify-X, CVPR 2019 ³ Zhang et al., PyMAF-X, PAMI 2023 ² Feng et al., PIXIE, 3DV 2021 ⁴ Lin et al., OSX, CVPR 2023

Reconstructing Signing Avatars From Video Using Linguistic Priors Maria-Paola Forte, Peter Kulits, Chun-Hao Paul Huang, Vasileios Choutas, Dimitrios Tzionas, Katherine J. Kuchenbecker, and Michael J. Black

Max Planck Institute for Intelligent Systems, Stuttgart and Tübingen, Germany

SGNify is based on the expressive SMPLify-X¹ body-reconstruction method.

We introduce two novel linguistic priors to increase the image evidence for a pose and improve handpose estimates for challenging videos:

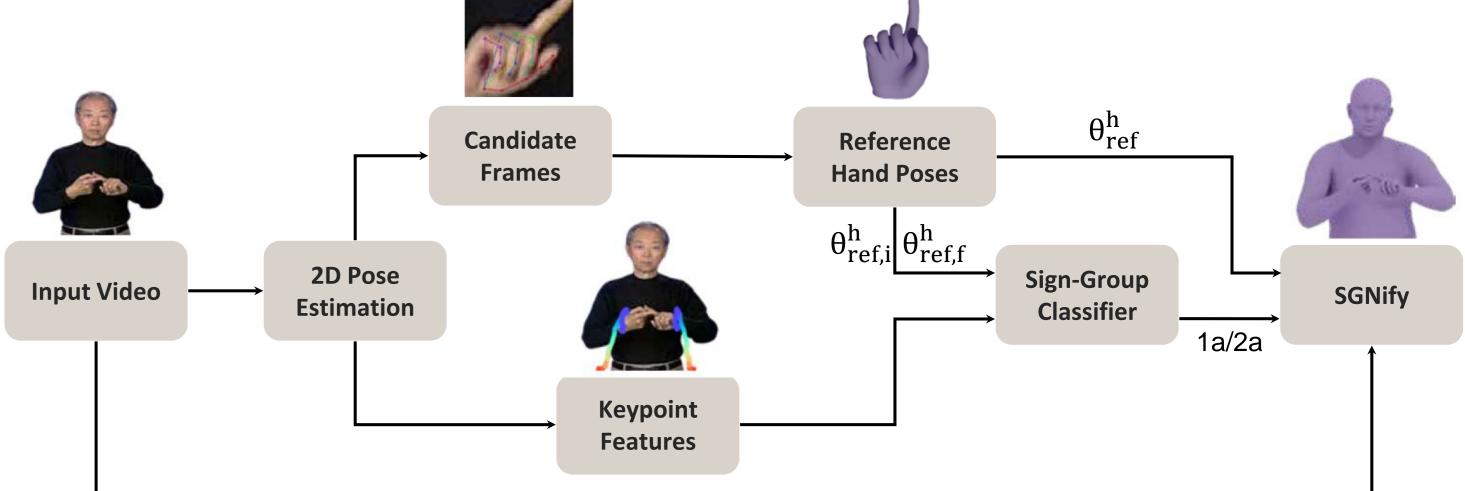
SMPLify-SL

Hand-Pose Symmetry: penalizes differences between the right and left hand-pose estimates

$$= \lambda_{s} \left\| \theta_{t}^{r} - r(\theta_{t}^{l}) \right\|_{2}^{2}$$

Hand-Pose Invariance: penalizes differences between the reference hand pose and the estimated hand pose. Each sign is defined by a characteristic reference pose sequence (θ_{ref}^{h}) which defines the hand pose that we expect at each time t

$$= \lambda_{h} \left\| \theta_{\text{ref,t}}^{r} - \theta_{t}^{r} \right\|_{2}^{2} \quad \text{OR} \quad \lambda_{h} \left\| \theta_{\text{ref,t}}^{l} - \theta_{t}^{l} \right\|_{2}^{2}$$
$$\lambda_{h} \left\| \psi_{r} - \psi_{r}^{*} \right\|_{2}^{2}$$


The hand pose is either static throughout the sign articulation or transitions from one pose to another pose.

Dataset

We collected isolated signs and sentences paired with groundtruth MoCap meshes.

Results

Quantitative

Mean Vertex-to-Vertex Erro of the 57 German signs in ou						
Method	Upper Body					
PIXIE ²	60.11	25.02				
PyMAF-X ³	68.61	21.46				
SMPLify-SL	56.07	22.23				
OSX ⁴	52.62	38.90				
SGNify	55.63	19.22				

Perceptual Study


20 proficient signers evaluated 50 A		
Method	Average Recogr	
Real Video	90.	
PyMAF-X ³	62.	
SMPLify-SL	74.	
SGNify	86.	

JUNE 18-22, 2023

Pipeline

Extensions

Multi-View

Continuous Signing

or (mm) ur dataset nd Right Hand 22.42 19.19 18.83 37.58 17.50

American signs gnition Rate (%)

MAX PLANCK INSTITUTE OR INTELLIGENT SYSTEMS