

Behind the Scenes

Density Fields for Single View Reconstruction

CVPR 2023 - Tag: WED-AM-081 fwmb.github.io/bts

Felix Wimbauer^{1,2}

Nan Yang¹

¹Technical University of Munich

ng¹ Chr

²MCML

Daniel Cremers^{1,2,3}

³University of Oxford

Behind the Scenes

A self-supervised method for volumetric reconstruction of a scene from a single image.

Density Field

A function ψ that maps every location x in the camera frustum to **volumetric density** σ .

vs. Monocular Depth Prediction e.g. Monodepth 2¹

We can reason about occluded areas.

¹Godard et al., Digging into Self-Supervised Monocular Depth Prediction, ICCV 2019 ² Yu, et al. Pixelnerf: Neural radiance fields from one or few images, CVPR 2021

vs. Learnable NeRFs e.g. PixelNeRF²

✓ We achieve **better generalization**.

Results

Novel View Synthesis

RealEstate10K

ΚΙΤΤΙ

a) Inferring a density field from ${f I}_I$

- **1. Shift capacity from MLP to feature extractor**
- → MLP can only reason about local geometry
- → Encoder-Decoder has to capture entire scene
- → Better generalization

- 2. Sample color instead of the MLP predicting color
- \rightarrow Implicit field function becomes simpler
- → Enforces multi-view consistency
- → More training stability, fewer artifacts

Available views during training

During training, multiple views are available:

- One view is considered the input image
- All views are partitioned into Loss and Render views

Available views during training

During training, multiple views are available:

- One view is considered the input image
- All views are partitioned into Loss and Render views

Available views during training

During training, multiple views are available:

- One view is considered the input image
- All views are partitioned into Loss and Render views

Loss views

Render views

During training, multiple views are available:

- One view is considered the input image
- All views are partitioned into Loss and Render views

Available views during training

Reconstruction loss:

- Perform volume rendering to reconstruct Loss views based on the predicted density
- Sample color from Render views
- Use **photometric consistency** as supervision signal

Learning Geometry in Occluded Regions

Traditional reprojection loss formulations do not give training signals for areas occluded in the input image.

- →Our density field allows reconstructing any frame from any other frame
- \rightarrow We can reconstruct **P** in view **I**₂ by sampling colors from **I**₃
- \rightarrow To minimize the loss, our network has to predict correct geometry for **P**, even though **P** is occluded in **I**_I
- → This requires at least two extra views other than the input view.

Datasets

KITTI-360¹

KITTI²

RealEstate10K³

¹Liao et al., KITTI-360: A novel dataset and benchmarks for urban scene understanding in 2d and 3d , TPAMI 2022

² Geiger et al., Vision meets Robotics: The KITTI Dataset, IJRR 2013

³ Zhou et al., Stereo magnification: Learning view synthesis using multiplane images, SIGGRAPH 2018

Occupancy Estimation - KITTI

Input & Predicted Depth

Ours

¹**Monodepth2**: Godard et al., Digging into Self-Supervised Monocular Depth Prediction, ICCV 2019 ²**Diveloper**: Diveloperf: Neural radiance fields from one or four images. CVDD 2021

² **PixelNeRF**: Pixelnerf: Neural radiance fields from one or few images, CVPR 2021

³ MINE: Li et al., Mine: Towards continuous depth mpi with nerf for novel view synthesis, ICCV 2021

Birds-Eye View (dark = high density)

Occupancy Estimation - KITTI

Model

Method	$O_{acc}\uparrow$	$IE_{acc} \uparrow$	$IE_{rec} \uparrow$
Depth [†] [14]	0.94	n/a	n/a
Depth [†] + $4m$ [14]	0.91	0.63	0.22
PixelNeRF [†] [57]	0.92	0.63	0.43
Ours (No <i>S</i> , <i>F</i>)	0.94	0.70	0.06
Ours (No F)	0.94	0.71	0.09
Ours	0.94	0.77	0.43

PixelNeRF [57] 0.130 5.134 0.845 / EPC++ [29] 0.128 5.585 0.831 х MonoDepth2 [14] Х 0.106 4.750 0.874 PackNet [16] 4.601 0.878 х Eigen [10] 0.111 4.627 DepthHint [51] X 0.105 0.875 FeatDepth [44] 0.099 4.427 0.889 х DevNet [60] 0.095 4.365 0.895 (✔) Ours 0.102 0.882 ✓ 4.407 **MINE** [23] 0.137 6.592 0.839 Tuls. [49] 0.132 6.104 0.873 Ours

Abs Rel \downarrow

Split

Volum.

RMSE $\downarrow \alpha < 1.25 \uparrow$

Occupancy Estimation against aggregated LiDAR Scans form multiple timesteps. Depth prediction against state-of-the-art monocular depth prediction methods.

EPC++: Luo et al., Every pixel counts++: Joint learning of geometry and motion with 3d holistic understanding, TPAMI 2019
PackNet: Guizilini et al., 3d packing for self-supervised monocular depth estimation, CVPR 2020
DepthHint: Watson et al., Self-supervised monocular depth hints, ICCV 2019
FeatDepth: Shu et al., Feature-metric loss for self-supervised learning of depth and egomotion, ECCV 2020
DevNet: Zhou et al., Devnet: Self-supervised monocular depth learning via density volume construction, ECCV 2022

¹ Monodepth2: Godard et al., Digging into Self-Supervised Monocular Depth Prediction, ICCV 2019

² PixelNeRF: Pixelnerf: Neural radiance fields from one or few images, CVPR 2021

³ MINE: Li et al., Mine: Towards continuous depth mpi with nerf for novel view synthesis, ICCV 2021

Qualitative Results – KITTI-360

Inference per frame on test sequences from KITTI-360. We show smooth transitions between expected ray termination depth, novel view synthesis, and birds-eye view.

Novel View Synthesis – KITTI & RealEstate10K

Behind the Scenes

Density Fields for Single View Reconstruction

- ✓ Volumetric reconstruction from a single image, even in occluded areas.
- ✓ New density field formulation and improved architecture enable training on challenging datasets and improve generalization.
- ✓ A self-supervised training scheme from only (stereo) video.

For code, pretrained models and more, please visit our project page at <u>fwmb.github.io/bts</u>

