THU-AM-085

All-in-focus Imaging from Event Focal Stack

Hanyue Lou^{1,2 #} Minggui Teng^{1,2 #} Yixin Yang^{1,2} Boxin Shi^{1,2}

¹ National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University
² National Engineering Research Center of Visual Technology, School of Computer Science, Peking University

Contributed equally to this work as first authors

Scene

Traditional Camera

One depth in focus

Focal Depth

Event Focal Stack

All depths in focus

Focal Depths

Scene

Input Image

Scene

Traditional Camera

One depth in focus

Focal Depth

Image Ground Truth DRBNet IFAN KPAC APL

Image-based Methods: High frequency information cannot be recovered due to the ill-posed nature of single image defocus deblur.

Frame-based Focal Stack Scene

Multiple depths in focus

Focal Depths

Image Focal Stack:

Requires careful operation & consumes long time; Information is only collected at a discrete number of focal distances.

Focal sweep:

By sweeping the focal point in a single exposure, information is collected from all depths, but the depth information is lost.

• Event cameras have novel sensors that measure only motion in the scene.

*Video courtesy of Elias Mueggler

• Events are generated any time a single pixel sees a change in brightness larger than the threshold.

Event Focal Stack

All depths in focus

Focal Depths

 $\log(\mathbf{I}^{d_j}) = \log(\mathbf{I}^{d_i}) + \sum \mathcal{E}^{d_i \to d_j}$

The latent intensity frame changes as the focal point moves. Events encode the logarithm change of latent intensity.

 $\log(\mathbf{I}^{d_j}) = \log(\mathbf{I}^{d_i}) + \sum \mathcal{E}^{d_i \to d_j}$

Given a defocused image and the EFS, we can reconstruct the latent image focused at any distance.

Golden Search for Refocus Timestamps

Step 1: For each patch of the image, we use the Golden Rate Search Algorithm to find the moment when it was in focus, getting N×N refocus timestamps(one for each patch).

Step 2: For each refocus timestamp, we use EvRefocusNet to reconstruct a refocused image from the input image + event focal stack, forming an image focal stack.

Step 3: We predict merging weights with EvMergeNet, using image focal stack and events as input. We merge the focal stack with weights to get all-in-focus result.

- We use Blender to render high-frame-rate focal sweep videos & ground truth all-in-focus images.
- We use MS COCO dataset images to enrich object textures.
- We use DVS-Voltmeter to simulate events from focal sweep videos. To prevent overfitting, we use random simulator parameters in each video.

• We use a hybrid camera system to capture real test data.

Defocused Image

Results on Synthetic Data

Ours

Ground Truth

Defocused Image

Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]

Ours

31

Events

Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]

Ours

32

DRBNet

Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]

Ours

IFAN

Ours Image-based defocus: [DRBNet, CVPR 2022], [IFAN, CVPR 2021], [KPAC, ICCV 2021], [APL, ECCV 2022]

34

35

KPAC

APL

37

Input Image

Input Image

A CARTS

Input Image

Input Image

Input Image

- We propose recording Event Focal Stacks (EFS) for high quality all-in-focus imaging.
- We design a three-stage algorithm to exploit the continuous information encoded in event focal stacks.

Project Page

