

Accelerating Vision-Language Pretraining with Free Language Modeling

Teng Wang, Yixiao Ge, Feng Zheng, Ran Cheng, Ying Shan, Xiaohu Qie, Ping Luo

Poster : THU-PM-244

Paper: https://arxiv.org/abs/2303.14038

Project: https://github.com/TencentARC/FLM

Vision-Language Pretraining (VLP)

VLP aims to pretrain the model by mining multimodal associations from large-scale unlabeled image-text data, serving as an initial stage for subsequent finetuning.

Diverse Vision-Language Tasks [Kushal et al.]

Overview

- We propose a new pretraining objective, i.e., Free language modeling (FLM), for accelerating vision-language pretraining.
- FLM frees the prediction rate from the constraints of the corruption rate, enabling an appealing 100% prediction rate for better convergence.
- With less than 50% pretraining time, FLM could achieve competitive performance on both vision-language understanding and generation tasks.

Related Work: Language Modeling

- Masked Language Modeling (MLM)
 - Mask ratio mainly in 15%-40%,
 - Large portion of output tokens is not utilized, impeding efficiency
 - E.g., VLBERT, VisualBERT, BEiT3

- Auto-regressive (AR)
 - 100% output tokens are utilized
 - Converge faster with high efficiency
 - Inferior performance on VL understanding tasks
 - E.g., Coca

- Others (mainly in NLP)
 - Prefix Language Modeling
 - Permuted Language Modeling
 - General Language Modeling

Can we **accelerate the convergence** of VLP by predicting 100% tokens like AR meanwhile achieving **competitive performance with MLM**?

Prediction Rate in MLM

Increasing prediction rate helps convergence.

How to increase efficiency while keeping competitive performance?

- Efficiency: Increase *r*_{pred}
 - Auto-regressive LM: $r_{pred} = 100\%$
 - MLM: r_{pred} can not be larger due to the coupling between r_{pred} and r_{corr}
 - FLM (Ours): $r_{pred} = 100\%$
- **Performance:** find the best *r_{corr}* & Bidirectional context modeling
 - Auto-regressive: uni-directional context \rightarrow unsatisfied performance
 - MLM: r_{pred} is coupled with and r_{corr}
 - FLM (Ours): Decouple r_{pred} and r_{corr} , and use bidirectional context

The proposed Free Language Modeling

- Decomposed bidirectional encoding
 - Left-to-right
 - Right-to-left

The proposed Free Language Modeling

- constructing reconstruct tasks via feature • recombination
 - Customized cross-attention masks ٠
 - Flexible combination between r_{corr} and r_{pred} ٠

- **Decomposed bidirectional encoding** ٠
 - Left-to-right ٠
 - Right-to-left ٠

Reverse Casual mask

Vision-Language Pretraining with Free Language Modeling

Vision Transformer: encoding image into tokens

Text transformer: encoding text features, followed by image-text fusion (cross-attention) **Reconstructor**: Feature recombination and solving reconstruction tasks

Training objectives: reconstruction loss L_R + intermediate loss L_{inter} (caption loss)

Experiments: Comparison with Language Modeling

Pretraining dataset: COCO+VG+SBU+CC3M (4M data)

Method	$r_{\rm corr}$	$r_{ m pred}$	VQA	NLVR ²		Retrieval (Flickr30K)		COCO Captioning			CPU Davis (speed up)	
			test-dev	dev	test	IR@1	TR@1	BLEU	METER	CIDEr	GFU Days (speed-up)	
AR	50%	100%	72.85	75.79	76.29	66.59	84.10	<u>35.70</u>	28.86	120.6	9.6 (6.1×)	
PrefixLM	25%	50%	72.64	75.73	76.17	66.21	82.70	35.50	28.79	119.4	10.0 (5.9×)	
MLM	15%	15%	73.52	77.46	78.28	71.33	88.40	34.90	28.50	117.5	58.7 (1×)	
MLM	40%	40%	73.95	<u>77.62</u>	<u>78.60</u>	73.41	89.20	35.50	28.79	120.3	58.7 (1×)	
FLM (Ours)	1/L	100%	<u>73.85</u>	77.99	78.63	<u>72.81</u>	87.40	36.68	29.17	123.0	22.7 (2.5×)	

- FLM achieves a 2.5× speed-up over MLM
- FLM keeps comparable performance on VL understanding tasks and superior performance on VL generation tasks.

Experiments: Corruption & Prediction Rate

	Corruption	VQA	$NLVR^2$
	span corruption $(1/L)$	73.85	78.63
corruption on features	span corruption (30%)	73.96	78.83
	span corruption (40%)	74.04	78.82
	span corruption (50%)	74.01	77.84
	random corruption (15%)	73.93	78.38
corruption on inputs	random corruption (30%)	73.69	77.74

(d) Corruption Rate. FLM enables a flexible choice of the corruption rate.

- With a 100% prediction rate, FLM benefits from a span corruption of 40%.
- No obvious performance gap between Inputlevel corruption and feature-level corruption.

Prediction rate	VQA	$NLVR^2$
50%	73.74	77.47
75%	73.89	77.65
90%	74.00	78.17
100%	73.85	78.63

• FLM with a larger prediction rate improves performance.

Experiments: Comparison with SOTA

Model	Protrain Task	Pretrain. Time VQAv2		NLVR ²		COCO Captioning				
widdel	rretram. Task	(GPU Days)	test-dev	test-std	dev	test	BLEU4	METEOR	CIDEr	SPICE
Pre-trained with <10M in										
UNITER _{LARGE} [6]	MLM, ITM, MVM, WRA	152 (V100)	73.82	74.02	79.12	79.98	-	-		
UNIMO _{LARGE} [20]	MLM, MVM, ITC	640 (V100)	75.06	75.27	-	-	-	-		
OSCAR	MLM, ITM	220 (V100)	73.61	73.82	79.12	80.37	37.4	30.7	127.8	23.5
VinVL _{BASE} [41]	MLM, ITM	320 (V100)	75.95	76.12	82.05	83.08	38.2	30.3	129.3	23.6
VinVL _{LARGE} [41]	MLM, ITM	320 (V100)	76.52	76.60	82.67	83.98	38.5	<u>30.4</u>	130.8	23.4
PixelBERT [12]	MLM, ITM	-	74.45	74.55	76.5	77.2	-	-	-	
CLIP-ViL [30]	MLM, ITM, VQA	40 (A100)	76.48	76.70	-	-	40.2*	29.7*	134.2*	23.8*
ViLT [41]	MLM, ITM, WRA	192 (V100)	71.26	-	75.70	76.13		-		
ALBEF (4M) [17]	MLM, ITM	28 (A100)	71.40	-	-	77.51	-	-		
ALBEF (4M) [17]	MLM, ITM, ITC	28 (A100)	74.54	74.70	80.24	80.50	-	-		
METER _{BASE} [9]	MLM, ITM	64 (A100)	77.68	77.64	82.33	83.05	38.8	30.0	128.2	23.0
Ours _{LARGE} (4M)	FLM	18 (V100)	77.80	77.84	81.77	81.83	38.3	30.2	<u>130.9</u>	-
Pre-trained with 10M~10										
ALBEF (14M) [17]	MLM, ITM, ITC	140 (A100)	75.84	76.04	82.55	83.14	-	-		
BLIP (14M) [16]	AR, ITM, ITC	112 (A100)	77.54	77.62	82.67	82.30	38.6	_	129.7	-
Ours _{LARGE} (13M)	FLM	52 (V100)	78.18	78.24	82.90	83.86	39.1	30.3	132.7	-
Pre-trained with >100M in									100	
SimVLM _{BASE} (1.8B) [36]	PrefixLM		77.87	78.14	81.72	81.77	39.0	32.9	134.8	24.0
SimVLM _{HUGE} (1.8B) 36	PrefixLM	-	80.03	80.34	84.53	85.15	40.6	33.7	143.3	25.4
LEMON (400M)	MLM	-	-	-	-	-	40.3	30.2	133.3	23.3

- Competitive performance on VQA, NLVR2, Image Captioning
- Training with FLM is more efficient than previous methods

Thank you for your listening!

Project Page

https://github.com/TencentARC/FLM