

Joint Token Pruning and Squeezing Towards More Aggressive Compression of Vision Transformers

Siyuan Wei, Tianzhu Ye, Shen Zhang, Yao Tang, Jiajun Liang

Paper tag: TUE-AM-200

Quick Preview

For token pruning in vision transformers, discarding ٠ tokens leads to incomplete subject and background context loss.

 We propose TPS: a nearest-neighbor matching algorithm to dispatch each pruned token to the most similar reserved token.

Input

DynamicViT prediction

snow leopard

- leopard ×
- folding chair \times

lawn mower

baseball

Quick Preview

 Two flexible variants: the inter-block version dTPS and the intra-block version eTPS, which are plug-and-play blocks for both vanilla ViTs and hybrid ViTs.

 dTPS and eTPS surpass baselines dynamicViT and EViT by a large margin.

Quick Preview

Method	Param(M)	GFLOPs	Top-1 Acc.(%)
LV-ViT-S	26.17	6.6	83.3
DynamicViT EViT eTPS (ours) dTPS* (ours)	26.89 26.17 26.17 26.89	3.8 3.9 3.8 3.8	82.0 82.5 82.5 82.6
PS-ViT-B/14	21.34	5.4	81.7
ATS dTPS* (ours)	21.34 22.07	3.7 3.7	81.5 81.5

• TPS can be extended to more vanilla ViTs...

...and hybrid ViTs.

Method	Param (M)	GFLOPs	Top-1 Acc. (%)
PVT-T	13.23	1.94	75.1
dTPS* (ours)	13.85	1.69 (-13%)	75.2 (+0.1)
PVT-S	24.49	3.83	79.8
dTPS* (ours)	25.11	3.14 (-18%)	79.2 (-0.6)
CvT-13	20.00	4.58	81.6
dTPS* (ours)	20.72	3.04 (-34 %)	80.8 (-0.8)
CvT-21	31.62	7.21	82.5
dTPS* (ours)	32.35	4.10 (-43%)	80.9 (-1.6)

• Compared with previous methods, our TPS demonstrates robustness under random policies.

Methods	Policy	Top-1 Acc. (%)
DynamicViT	Original	79.42
Dynamic VII	Random	76.51 (-3.7)
ATDC	Original	79.68
ulrs	Random	78.19 (-1.9)
EVET	Original	79.51
EVII	Random	77.47 (-2.6)
TDC	Original	79.66
errs	Random	78.06 (-2.0)

Motivation

- Vision Transformer: new arch from NLP
- Strong performance but high computation cost

Motivation

Introduction

Wrong predictions led by pruning

snow leopard lawn r

lawn mower

baseball

leopard \times

folding chair \times

rugby ball imes

Toy Experiments

Bonus accuracy from pruned tokens increases along with more aggressive pruning strategies.

Introduction

TPS: Joint Token Pruning and Squeezing

- 1. preserve information from pruned tokens
- 2. constant-shape
- 3. no extra tokens

Method

Step1: Pruning:

Two variants for covering both inter-block & intra-block pruning

- **dTPS** vs DynamicViT: learnable scoring, inter-block
- **eTPS** vs EViT: attention scoring, intra-block

Method

Step2: Squeezing: Matching + Fusing

- Matching:
 - a unidirectional nearest-neighbor matching algorithm from pruned set to reserved set in a many-toone manner
 - derive the matching relations based on a similarity matrix (cosine > previous attention)
- Fusing:
 - Similarity-based weighting, implementation with regular operations

$$\boldsymbol{y}_j = w_j \boldsymbol{x}_j + \sum_{\boldsymbol{x}_i \in S^p} w_i \boldsymbol{x}_i, \tag{4}$$

$$w_i = \frac{\exp(c_{i,j})m_{i,j}}{\sum_{\boldsymbol{x}_i \in S^p} \exp(c_{i,j})m_{i,j} + \mathbf{e}}.$$
(5)

$$w_j = \frac{\mathbf{e}}{\sum_{\boldsymbol{x}_i \in S^p} \exp(c_{i,j}) m_{i,j} + \mathbf{e}}.$$
 (6)

Main Results

Comparison to baselines

Main Results

Comparison to current SOTAs

Method	Param(M)	GFLOPs	Top-1 Acc (%)
DeiT-S	22.05	EGVII町	视 7 () 所考大
DynamicViT [25]	22.77	2.9	79.3
EViT [16]	22.05	3.0	79.5
ATS [†] [8]	22.05	2.9	79.7
A-ViT [†] [36] (100 epochs)	22.05	3.6	78.6
Evo-ViT [35] (300 epochs)	22.05	3.0	79.4
SPViT [14] (75 epochs)	22.13	2.7	79.3
IA-RED ² [21] (90 epochs)	-	-	79.1
eTPS (ours)	22.05	3.0	79.7
dTPS* (ours)	22.77	3.0	80.1
DeiT-T	5.72	1.3	72.2
DynamicViT(re-impl) [25]	5.90	0.8	71.4
EViT(re-impl) [16]	5.72	0.8	71.9
A-ViT [†] [36] (100 epochs)	5.00	0.8	71.0
Evo-ViT [35] (300 epochs)	5.72	0.8	72.0
SPViT [14] (75 epochs)	-	0.9	72.1
eTPS (ours)	5.72	0.8	72.3
dTPS* (ours)	5.90	0.8	72.9
LV-ViT-S	26.17	6.6	83.3
DynamicViT [25]	26.89	3.8	82.0
EViT [16]	26.17	3.9	82.5
eTPS (ours)	26.17	3.8	82.5
dTPS* (ours)	26.89	3.8	82.6
LV-ViT-T	8.53	2.9	79.1
DynamicViT(re-impl) [25]	8.82	2.0	77.1
eTPS (ours)	8.53	2.0	78.0
dTPS* (ours)	8.82	2.0	78.7
PS-ViT-B/14 [39]	21.34	5.4	81.7
ATS [†] [8]	21.34	3.7	81.5
dTPS* (ours)	22.07	3.7	81.5

Extension on more backbones

Ablation Study

80 78 Acc % 76 ---- dynamicViT Top-1 74 Ours: dTPS EViT --72 Ours: eTPS 70 DeiT-small 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Keep Ratio

Epochs of training

Different keeping ratios

Ablation Study

Feature Type	Top-1 Acc. (%)	
Full	71.90	
Content	71.73	
Position	70.92	

Feature type used in matching

TPM Variant	Similarity Matrix	GFLOPs	Top-1 Acc.(%)
TDC	Cosine similarity	0.810	71.90
dips	Previous attention	0.807	71.35
eTPS	Cosine similarity	0.821	72.26
	Previous attention	0.818	71.67

Different similarity matrix

Matching Method	Acc. (%)
N:1	71.90
1:1	69.02

Differen matching methods

Fusing Method	Policy	Acc. (%)
Weighting	Original	70.58
	Random	65.56 (-5.02)
Average	Original	70.47
	Random	65.173 (-5.30)

Different fusing methods

More Visualizations

castle

leopard ×

snow leopard

lawn mower

folding chair \times

baseball V

baseball

rugby ball ×

palace ×

TPS prediction

snow leopard $\sqrt{}$

lawn mowerv

orange ×

pineapple √

agama √

Thanks

