

Poster Tag: Thur-AM-358

Gradient Norm Aware Minimization Seeks First-Order Flatness and Improves Generalization

CVPR, 2023 Xingxuan Zhang[†], Renzhe Xu[†], Han Yu, Hao zou, Peng Cui^{*}

Generalization and Overfitting

 As the model overfits the training data, the generalization error increases.

Ref: https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Generalization and Flatness

Skip connections in ResNet lead to flat minima and better generalization

3

Generalization and Flatness

Recent works show that flat minima lead to better generalization

Theorem (stated informally) 1. For any $\rho > 0$, with high probability over training set S generated from distribution \mathcal{D} ,

$$L_{\mathscr{D}}(\boldsymbol{w}) \leq \max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\epsilon}) + h(\|\boldsymbol{w}\|_{2}^{2}/\rho^{2}),$$

where $h : \mathbb{R}_+ \to \mathbb{R}_+$ is a strictly increasing function (under some technical conditions on $L_{\mathscr{D}}(w)$).

To make explicit our sharpness term, we can rewrite the right hand side of the inequality above as

$$\left[\max_{\|\boldsymbol{\epsilon}\|_2 \leq \rho} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\epsilon}) - L_{\mathcal{S}}(\boldsymbol{w})\right] + L_{\mathcal{S}}(\boldsymbol{w}) + h(\|\boldsymbol{w}\|_2^2/\rho^2).$$

Ref: Keskar, Nitish Shirish, et al. "On large-batch training for deep learning: Generalization gap and sharp minima." in ICLR 2017 Foret, Pierre, et al. "Sharpness-aware minimization for efficiently improving generalization." in ICLR 2021.

Zeroth-order flatness and first-order flatness

Zeroth-order flatness – sharpness aware minimization (SAM)

Theorem (stated informally) 1. For any $\rho > 0$, with high probability over training set S generated from distribution \mathcal{D} ,

$$L_{\mathscr{D}}(\boldsymbol{w}) \leq \max_{\|\boldsymbol{\epsilon}\|_{2} \leq \rho} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\epsilon}) + h(\|\boldsymbol{w}\|_{2}^{2}/\rho^{2}),$$

where $h : \mathbb{R}_+ \to \mathbb{R}_+$ is a strictly increasing function (under some technical conditions on $L_{\mathscr{D}}(\boldsymbol{w})$).

To make explicit our sharpness term, we can rewrite the right hand side of the inequality above as

$$[\max_{\|\boldsymbol{\epsilon}\|_2 \leq \rho} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\epsilon}) - L_{\mathcal{S}}(\boldsymbol{w})] + L_{\mathcal{S}}(\boldsymbol{w}) + h(\|\boldsymbol{w}\|_2^2/\rho^2).$$

$$\nabla_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \approx \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(w)|_{\boldsymbol{w}+\hat{\boldsymbol{\epsilon}}(\boldsymbol{w})}$$

Figure 2: Schematic of the SAM parameter update.

Ref: Foret, Pierre, et al. "Sharpness-aware minimization for efficiently improving generalization." in ICLR 2021.

Zeroth-order flatness and first-order flatness

zeroth-order flatness and first-order flatness

Definition 3.1 (ρ -zeroth-order flatness). For any $\rho > 0$, the ρ -zeroth-order flatness $R_{\rho}^{(0)}(\theta)$ of function $\hat{L}(\theta)$ at a point θ is defined as

$$R^{(0)}_{\rho}(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{\theta}' \in B(\boldsymbol{\theta},\rho)} \left(\hat{L}(\boldsymbol{\theta}') - \hat{L}(\boldsymbol{\theta}) \right), \quad \forall \boldsymbol{\theta} \in \Theta.$$
 (2)

Here ρ is the perturbation radius that controls the magnitude of the neighborhood.

Definition 4.1 (ρ -first-order flatness). For any $\rho > 0$, the ρ -first-order flatness $R_{\rho}^{(1)}(\theta)$ of function $\hat{L}(\theta)$ at a point θ is defined as

$$R_{\rho}^{(1)}(\boldsymbol{\theta}) \triangleq \rho \cdot \max_{\boldsymbol{\theta}' \in B(\boldsymbol{\theta}, \rho)} \left\| \nabla \hat{L}(\boldsymbol{\theta}') \right\|, \quad \forall \boldsymbol{\theta} \in \Theta. \quad (3)$$

Here ρ is the perturbation radius that controls the magnitude of the neighbourhood.

• The definition of GAM

Definition (Gradient norm Aware Minimization (GAM)). For any $\rho > 0$, GAM is defined as

$$R_{\rho}^{\text{GNR}}(\boldsymbol{\theta}) \triangleq \rho \cdot \max_{\boldsymbol{\theta}' \in B(\boldsymbol{\theta}, \rho)} \left\| \nabla \hat{L}(\boldsymbol{\theta}') \right\|, \quad \forall \boldsymbol{\theta} \in \Theta.$$
(1)

Here ρ is the perturbation radius that controls the magnitude of the neighbourhood.

The approximation and optimization of GAM

$$\nabla R_{\rho}^{(1)}(\boldsymbol{\theta}) \approx \rho \cdot \nabla \left\| \nabla \hat{L}(\boldsymbol{\theta}^{\mathrm{adv}}) \right\|, \quad \boldsymbol{\theta}^{\mathrm{adv}} = \boldsymbol{\theta} + \rho \cdot \frac{\boldsymbol{f}}{\|\boldsymbol{f}\|},$$
$$\boldsymbol{f} = \nabla \left\| \nabla \hat{L}(\boldsymbol{\theta}) \right\|.$$

$$orall oldsymbol{ heta} \in \Theta, \quad
abla \|
abla \hat{L}(oldsymbol{ heta})\| = rac{
abla^2 \hat{L}(oldsymbol{ heta}) \cdot
abla \hat{L}(oldsymbol{ heta})}{\|
abla \hat{L}(oldsymbol{ heta})\|}.$$

Algorithm 1 Gradient norm Aware Minimization (GAM)

- Input: Batch size b, Learning rate η_t, Perturbation radius ρ_t, Trade-off coefficient α, Small constant ξ
 t ← 0, θ₀ ← initial parameters
- 2: $\iota \leftarrow 0, \upsilon_0 \leftarrow \text{initial parallele}$
- 3: while θ_t not converged do 4: Somple $W_t \in \{(x, y_t), (x, y_t)\}$

4: Sample
$$W_t \leftarrow \{(x_1, y_1), (x_2, y_2), \dots, (x_b, y_b)\}$$

5: $h_t^{\text{loss}} \leftarrow \nabla L^{\text{oracle}}(\theta_t) \triangleright \text{Calculate the oracle loss}$
gradient $\nabla L^{\text{oracle}}(\theta_t)$

$$\begin{array}{l} \text{gradient } & \mathcal{L} (\mathfrak{d}_{t}) \\ \text{f:} & \boldsymbol{f}_{t} \leftarrow \nabla^{2} \hat{L}_{W_{t}}(\boldsymbol{\theta}_{t}) \cdot \frac{\nabla \hat{L}_{W_{t}}(\boldsymbol{\theta}_{t})}{\left\| \nabla \hat{L}_{W_{t}}(\boldsymbol{\theta}_{t}) \right\| + \xi} \\ \text{f:} & \boldsymbol{\theta}_{t}^{\text{adv}} \leftarrow \boldsymbol{\theta}_{t} + \rho_{t} \cdot \frac{\boldsymbol{f}_{t}}{\left\| \boldsymbol{f}_{t} \right\| + \xi} \\ \text{s:} & \boldsymbol{h}_{t}^{\text{norm}} \leftarrow \rho_{t} \cdot \nabla^{2} \hat{L}_{W_{t}}(\boldsymbol{\theta}_{t}^{\text{adv}}) \cdot \frac{\nabla \hat{L}_{W_{t}}(\boldsymbol{\theta}_{t}^{\text{adv}})}{\left\| \nabla \hat{L}_{W_{t}}(\boldsymbol{\theta}_{t}^{\text{adv}}) \right\| + \xi} \end{array}$$

Calculate the norm gradient $abla R_{
ho}^{(1)}(oldsymbol{ heta}_t)$

9: $\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - \eta_t (\boldsymbol{h}_t^{\text{loss}} + \alpha \boldsymbol{h}_t^{\text{norm}})$ 10: $t \leftarrow t+1$

12: return $\boldsymbol{\theta}_t$

The properties of GAM

Hessian eigenvalue **Proposition 2.1.** Let θ^* be a local minimum of \hat{L} . Suppose \hat{L} can be second order Taylor approximated in the neighbourhood $B(\theta^*, \rho)$, i.e., $\forall \theta \in B(\theta^*, \rho)$, $\hat{L}(\theta) = \hat{L}(\theta^*) + (\theta - \theta^*)^\top \nabla^2 \hat{L}(\theta^*)(\theta - \theta^*)/2$. Then

$$\lambda_{\max}\left(\nabla^2 \hat{L}(\boldsymbol{\theta}^*)\right) = \frac{R_{\rho}^{GNR}(\boldsymbol{\theta}^*)}{\rho^2}.$$
(2)

Generalization error bound

$$\mathbb{E}_{\epsilon_i \sim N(0,\rho^2/(\sqrt{d}+\sqrt{\log n})^2)}[L(\boldsymbol{\theta}+\boldsymbol{\epsilon})]$$

$$\leq \hat{L}(\boldsymbol{\theta}) + R_{\rho}^{GNR}(\boldsymbol{\theta}) + \sqrt{\frac{\frac{1}{4}d\log\left(1+\frac{\|\boldsymbol{\theta}\|^2(\sqrt{d}+\sqrt{\log n})^2}{d\rho^2}\right) + \frac{1}{4} + \log\frac{n}{\delta} + 2\log(6n+3d)}{n-1}} + \frac{M}{\sqrt{n}}.$$

Convergence

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left[\left\| \nabla L^{overall}(\boldsymbol{\theta}_t) \right\|^2 \right] \le \frac{C_1 + C_2 \log T}{\sqrt{T}},$$

Experimental results on CIFAR-10 and CIFAR-100

Table 1. Results of GAM with state-of-the-art models on CIFAR-10 and CIFAR-100. The best results are highlighted in bold font.

		CIFAR-10				CIFAR-100			
Model	Aug	SGD	SGD + GAM	SAM	SAM + GAM	SGD	SGD + GAM	SAM	SAM + GAM
ResNet18 ResNet18 ResNet18 ResNet18	Basic Cutout RA AA	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 96.17_{\pm 0.21} \\ 96.46_{\pm 0.20} \\ 96.52_{\pm 0.09} \\ 96.71_{\pm 0.07} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{96.75}_{\pm 0.18} \\ \textbf{96.99}_{\pm 0.23} \\ \textbf{97.06}_{\pm 0.13} \\ \textbf{97.17}_{\pm 0.08} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{79.53}_{\pm 0.30} \\ \textbf{79.89}_{\pm 0.31} \\ \textbf{79.82}_{\pm 0.24} \\ \textbf{80.56}_{\pm 0.21} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 80.45 _{\pm 0.25} \\ 80.80 _{\pm 0.14} \\ 80.97 _{\pm 0.29} \\ 81.59 _{\pm 0.24} \end{array}$
ResNet101 ResNet101 ResNet101 ResNet101	Basic Cutout RA AA	$\begin{array}{ c c c c c } 96.35_{\pm 0.08} \\ 96.56_{\pm 0.18} \\ 96.68_{\pm 0.25} \\ 96.78_{\pm 0.14} \end{array}$	$\begin{array}{c} \textbf{96.98}_{\pm 0.11} \\ \textbf{97.22}_{\pm 0.05} \\ \textbf{97.33}_{\pm 0.30} \\ \textbf{97.39}_{\pm 0.18} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 97.20_{\pm 0.15}\\ 97.36_{\pm 0.24}\\ 97.40_{\pm 0.23}\\ 97.42_{\pm 0.1}\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{82.21}_{\pm 0.40} \\ \textbf{82.36}_{\pm 0.24} \\ \textbf{82.40}_{\pm 0.31} \\ \textbf{83.19}_{\pm 0.15} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 83.13 _{\pm 0.07} \\ 83.40 _{\pm 0.13} \\ 83.28 _{\pm 0.20} \\ 83.94 _{\pm 0.23} \end{array}$
WRN28_2 WRN28_2 WRN28_2 WRN28_2	Basic Cutout RA AA	$\begin{array}{ c c c c c } 94.82 \pm 0.07 \\ 95.70 \pm 0.20 \\ 95.75 \pm 0.16 \\ 95.44 \pm 0.06 \end{array}$	$\begin{array}{c} 95.69_{\pm 0.13} \\ 96.41_{\pm 0.18} \\ 96.35_{\pm 0.13} \\ 95.98_{\pm 0.09} \end{array}$	$\begin{array}{ c c c c c } 95.47_{\pm 0.08} \\ 96.22_{\pm 0.13} \\ 96.22_{\pm 0.08} \\ 96.07_{\pm 0.08} \end{array}$	$\begin{array}{c} \textbf{95.85}_{\pm 0.08} \\ \textbf{96.39}_{\pm 0.22} \\ \textbf{96.49}_{\pm 0.20} \\ \textbf{96.44}_{\pm 0.09} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{77.21}_{\pm 0.31} \\ \textbf{78.58}_{\pm 0.24} \\ \textbf{78.66}_{\pm 0.03} \\ \textbf{79.05}_{\pm 0.10} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{77.69}_{\pm 0.20} \\ \textbf{79.33}_{\pm 0.12} \\ \textbf{78.96}_{\pm 0.13} \\ \textbf{79.50}_{\pm 0.21} \end{array}$
WRN28_10 WRN28_10 WRN28_10 WRN28_10 WRN28_10	Basic Cutout RA AA	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{96.61}_{\pm 0.15} \\ \textbf{96.97}_{\pm 0.05} \\ \textbf{96.83}_{\pm 0.03} \\ \textbf{97.05}_{\pm 0.04} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{97.29}_{\pm 0.11} \\ \textbf{97.56}_{\pm 0.12} \\ \textbf{97.49}_{\pm 0.03} \\ \textbf{97.67}_{\pm 0.08} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 83.45 _{\pm 0.09} \\ 83.69 _{\pm 0.08} \\ 83.84 _{\pm 0.09} \\ 84.02 _{\pm 0.18} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 84.31_{\pm 0.06}\\ 84.43_{\pm 0.13}\\ 84.68_{\pm 0.13}\\ 84.81_{\pm 0.21}\end{array}$
PyramidNet110 PyramidNet110 PyramidNet110 PyramidNet110	Basic Cutout RA AA	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 97.11_{\pm 0.14} \\ 97.32_{\pm 0.21} \\ 97.80_{\pm 0.22} \\ 97.85_{\pm 0.02} \end{array}$	$\begin{array}{ c c c c c } 97.26_{\pm 0.05} \\ 97.49_{\pm 0.06} \\ 97.60_{\pm 0.09} \\ 97.61_{\pm 0.14} \end{array}$	$\begin{array}{c} 97.51_{\pm 0.09} \\ 97.91_{\pm 0.14} \\ 98.01_{\pm 0.10} \\ 97.95_{\pm 0.10} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{84.91}_{\pm 0.09} \\ \textbf{85.20}_{\pm 0.19} \\ \textbf{86.47}_{\pm 0.14} \\ \textbf{85.92}_{\pm 0.03} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{85.25}_{\pm 0.06} \\ \textbf{85.46}_{\pm 0.10} \\ \textbf{85.64}_{\pm 0.20} \\ \textbf{86.35}_{\pm 0.18} \end{array}$

• Experimental results on ImageNet and transfer learning

Model	Dataset	Base Opt	Base + GAM	SAM	SAM + GAM
ResNet50 ResNet50	Top-1 Top-5	$\begin{array}{ c c c c }\hline 76.01_{\pm 0.19} \\ 92.75_{\pm 0.08} \\ \hline \end{array}$	$\begin{array}{c} \textbf{76.59}_{\pm 0.15} \\ \textbf{93.10}_{\pm 0.08} \end{array}$	$\begin{array}{ c c c c c }\hline 76.47_{\pm 0.11}\\93.07_{\pm 0.05}\end{array}$	$76.86_{\pm 0.15} \\ 93.22_{\pm 0.06}$
ResNet101 ResNet101	Top-1 Top-5	$\begin{array}{ c c c c } 77.69_{\pm 0.08} \\ 93.76_{\pm 0.09} \end{array}$	$78.45_{\pm 0.10} \\ 94.09_{\pm 0.12}$	$\begin{array}{ c c c c } 78.35_{\pm 0.12} \\ 94.02_{\pm 0.06} \end{array}$	$78.70_{\pm 0.12} \\ 94.15_{\pm 0.12}$
ViT-S/32 ViT-S/32	Top-1 Top-5	$\left \begin{array}{c} 68.26_{\pm 0.22} \\ 87.39_{\pm 0.19} \end{array}\right.$	$\begin{array}{c} \textbf{69.95}_{\pm 0.16} \\ \textbf{88.11}_{\pm 0.26} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{70.15}_{\pm 0.18} \\ \textbf{88.23}_{\pm 0.18} \end{array}$
ViT-B/32 ViT-B/32	Top-1 Top-5	$\begin{array}{ c c c c }\hline 71.15_{\pm 0.14} \\ 90.12_{\pm 0.07} \\ \hline \end{array}$	$73.58_{\pm 0.06} \\ 91.15_{\pm 0.19}$	$\begin{array}{ c c c c c }\hline 73.10_{\pm 0.18} \\ 91.03_{\pm 0.06} \end{array}$	$73.70_{\pm 0.10} \\ 91.50_{\pm 0.16}$

-

	EfficientNet-b0			Swin-t				
Dataset	SGD	SGD + GAM	SAM	SAM + GAM	AdamW	AdamW + GAM	SAM	SAM + GAM
Stanford Cars	82.14	83.50	83.21	83.98	83.50	84.90	83.55	85.29
CIFAR-10	86.26	87.37	86.95	87.97	91.32	92.06	91.77	92.55
CIFAR-100	63.75	64.85	64.29	65.03	72.88	73.78	73.99	74.30
Oxford_IIIT_Pets	91.03	91.80	91.65	91.96	93.49	93.87	93.59	94.03
Food101	82.54	82.69	82.57	83.01	86.38	86.89	86.64	87.03

GAM Hessian spectrum and visualization

Thanks!

Xingxuan Zhang[†], Renzhe Xu[†], Han Yu, Hao zou, Peng Cui^{*}. Gradient Norm Aware Minimization Seeks First-Order Flatness and Improves Generalization. *CVPR*, 2023, *Highlight*.

Github: https://github.com/xxgege/GAM