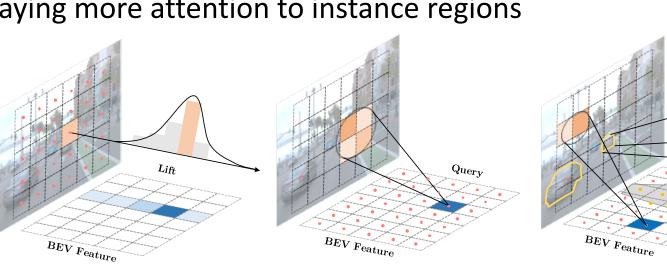
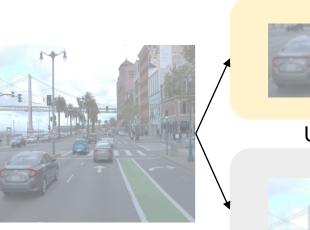


FrustumFormer: Adaptive Instance-aware Resampling for Multi-view 3D Detection

Yuqi Wang^{1,2} Yuntao Chen³ Zhaoxiang Zhang^{1,2,3}

¹ Institute of Automation, Chinese Academy of Sciences (CASIA)
 ² School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS)
 ³ Centre for Artificial Intelligence and Robotics, HKISI_CAS


Motivation


U View Feature Transformation

- How to transform view feature?
- Choosing what to transform?

□ Adaptive View transformation

> Paying more attention to instance regions

Important

Unimportant

Instance Frustum

Method Overview

FrustumFormer

1. Backbone 2. Frustum Encoder 3. Frustum Fusion 4. Detection Head

Frustum Encoder

Instance Queries: sparse and irregular

Scene Queries: dense and regular

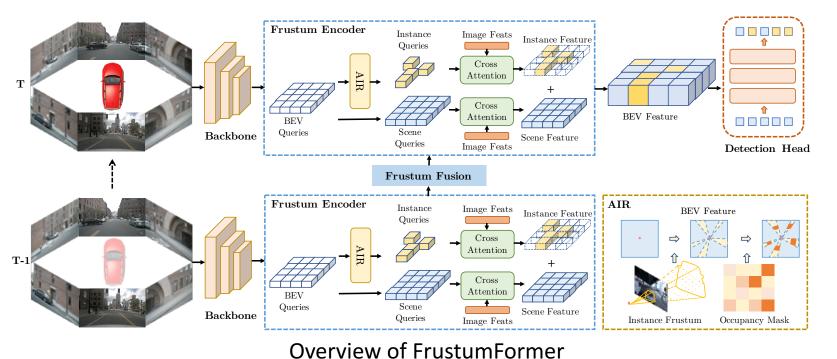


 Image: select of the select

nuScenes test set:

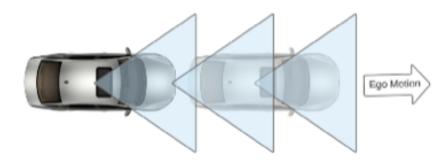
Methods	Backbone	CBGS	LiDAR	mAP↑	NDS↑	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
FCOS3D‡ [35]	R101 [†]			0.358	0.428	0.690	0.249	0.452	1.434	0.124
PGD [34]	R101 [†]			0.386	0.448	0.626	0.245	0.451	1.509	0.127
BEVFormer [19]	R101 [†]			0.445	0.535	0.631	0.257	0.405	0.435	0.143
PolarFormer [13]	R101 [†]			0.457	0.543	0.612	0.257	0.392	0.467	0.129
FrustumFormer	R101 [†]			0.478	0.561	0.575	0.257	0.402	0.411	0.132
DD3D [28]‡	V2-99*			0.418	0.477	0.572	0.249	0.368	1.014	0.124
DETR3D‡ [36]	V2-99*	✓		0.412	0.479	0.641	0.255	0.394	0.845	0.133
Ego3RT [25]	V2-99*			0.425	0.473	0.549	0.264	0.433	1.014	0.145
M2BEV [40]	X-101			0.429	0.474	0.583	0.254	0.376	1.053	0.190
BEVDet4D‡ [11]	Swin-B	✓		0.451	0.569	0.511	0.241	0.386	0.301	0.121
UVTR [17]	V2-99*			0.472	0.551	0.577	0.253	0.391	0.508	0.123
BEVFormer [19]	V2-99*			0.481	0.569	0.582	0.256	0.375	0.378	0.126
PolarFormer [13]	V2-99*			0.493	0.572	0.556	0.256	0.364	0.440	0.127
PETRv2 [23]	V2-99*			0.490	0.582	0.561	0.243	0.361	0.343	0.120
BEVDepth [‡] [18]	V2-99*	 ✓ 	✓	0.503	0.600	0.445	0.245	0.378	0.320	0.126
BEVStereo [16]	V2-99*	✓	✓	0.525	0.610	0.431	0.246	0.358	0.357	0.138
FrustumFormer	V2-99*			0.516	0.589	0.555	0.249	0.372	0.389	0.126

nuScenes validation set:

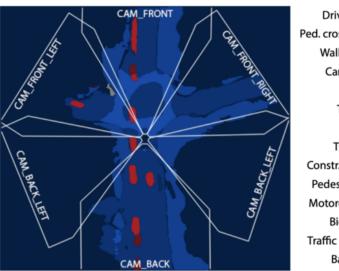
Methods	Backbone	CBGS	LiDAR	mAP↑	NDS↑	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
FCOS3D [35]	R101 [†]			0.295	0.372	0.806	0.268	0.511	1.315	0.170
DETR3D [36]	R101 [†]	\checkmark		0.349	0.434	0.716	0.268	0.379	0.842	0.200
PGD [34]	R101 [†]			0.358	0.425	0.667	0.264	0.435	1.276	0.177
PETR [22]	R101 [†]	\checkmark		0.370	0.442	0.711	0.267	0.383	0.865	0.201
UVTR [17]	R101 [†]			0.379	0.483	0.731	0.267	0.350	0.510	0.200
BEVFormer [19]	R101 [†]			0.416	0.517	0.673	0.274	0.372	0.394	0.198
PolarFormer [13]	R101 [†]			0.432	0.528	0.648	0.270	0.348	0.409	0.201
BEVDepth [18]	R101		\checkmark	0.412	0.535	0.565	0.266	0.358	0.331	0.190
STS [38]	R101	\checkmark	\checkmark	0.431	0.542	0.525	0.262	0.380	0.369	0.204
FrustumFormer	R101 [†]			0.457	0.546	0.624	0.265	0.362	0.380	0.191

We achieve **SOTA performance** on nuScenes test/val set without extra LiDAR supervision

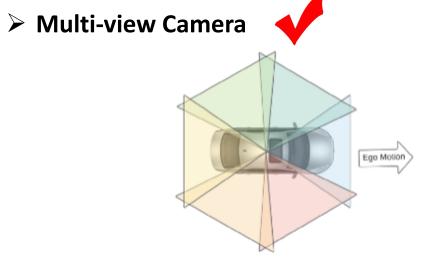
FrustumFormer: Adaptive Instance-aware Resampling for Multi-view 3D Detection


Yuqi Wang^{1,2} Yuntao Chen³ Zhaoxiang Zhang^{1,2,3}

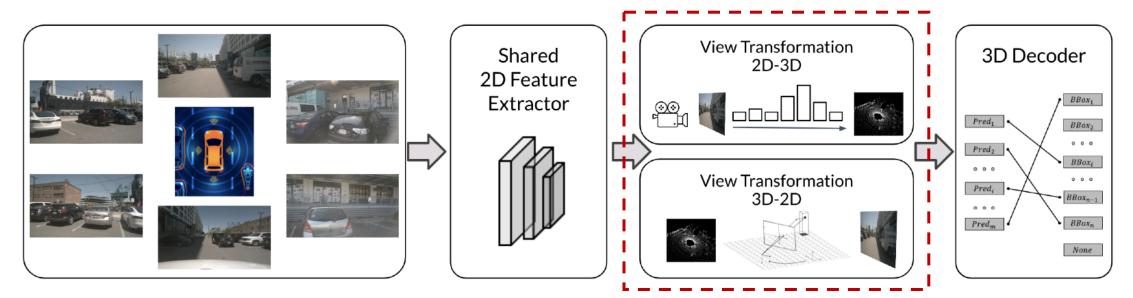
¹ Institute of Automation, Chinese Academy of Sciences (CASIA)
 ² School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS)
 ³ Centre for Artificial Intelligence and Robotics, HKISI_CAS

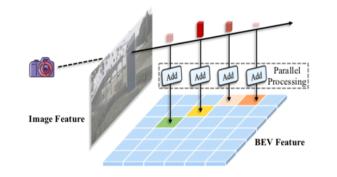

Camera-based 3D Object Detection

Mono Camera



> 3D Object Detection





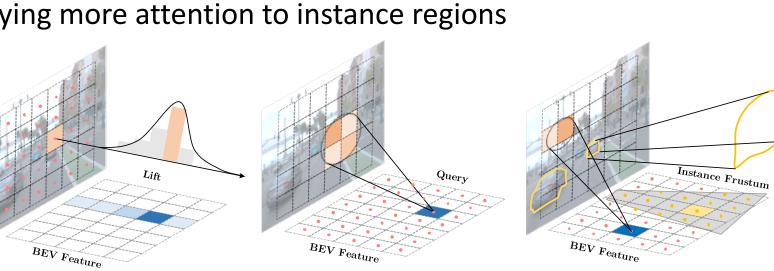
Multi-view 3D Object Detection

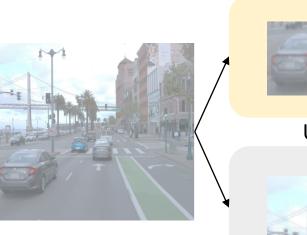
How to transform view feature?

2D Lift 3D

Ego-sensor feature

3D Query 2D


Motivation


U View Feature Transformation

- How to transform view feature?
- Choosing what to transform?

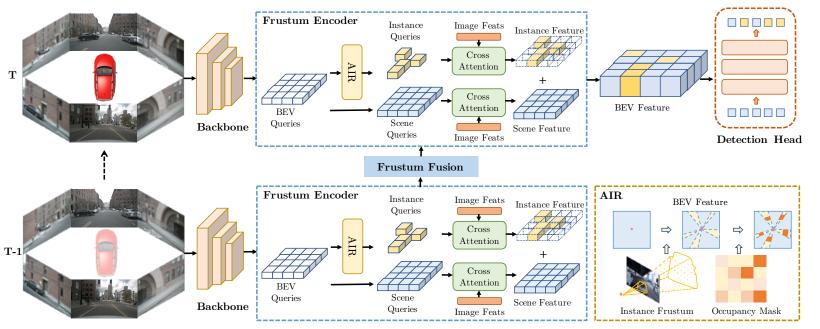
□ Adaptive View transformation

> Paying more attention to instance regions

Important

Unimportant

Method Overview

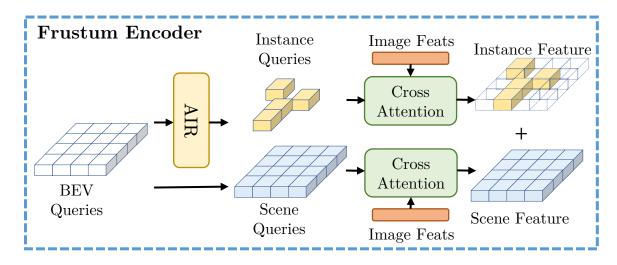

FrustumFormer

1. Backbone 2. Frustum Encoder 3. Frustum Fusion 4. Detection Head

Frustum Encoder

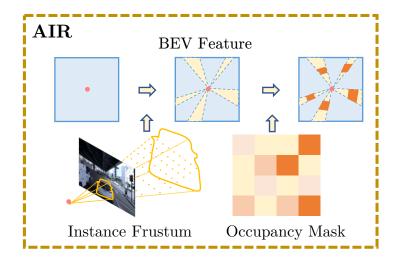
Instance Queries: sparse and irregular

Scene Queries: dense and regular


Overview of FrustumFormer

Frustum Fusion

Method Details


Frustum Encoder

- Instance queries(yellow): instance queries are sparse and generated from irregular instance frustum.
- Scene queries(blue): scene queries are dense and generated from regular BEV grids.

□ Adaptive Instance-aware Resampling

- Instance frustum query generation: we take advantage of object detection on the image plane and leverage its instance frustum on the BEV plane to select the instance frustum queries.
- Frustum occupancy mask prediction: in order to reduce the localization uncertainty, we propose to predict an occupancy mask for all frustums.

Method Details

□ Instance Frustum Cross-Attention (IFCA)

✓ Deformable Attention

$$IFCA(\mathbf{Q}_i^{p_i}, \mathbf{F}_j) = \frac{1}{|v|} \sum_{j \in v} \sum_{m=1}^M DA(\mathbf{Q}_i^{p_i}, \pi_j(\mathbf{p}_i^m), \mathbf{F}_j)$$

Temporal Frustum Cross-Attention (TFCA)

✓ A sequential RNN way

$$TFCA(\mathbf{Q}_{f}^{p_{i}},\mathbf{H}_{f}) = \sum_{m=1}^{M} DA(\mathbf{Q}_{f}^{p_{i}},\mathbf{p'}_{i}^{m},\mathbf{H}_{f})$$

nuScenes test set:

Methods	Backbone	CBGS	LiDAR	mAP↑	NDS↑	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
FCOS3D‡ [35]	R101 [†]			0.358	0.428	0.690	0.249	0.452	1.434	0.124
PGD [34]	R101 [†]			0.386	0.448	0.626	0.245	0.451	1.509	0.127
BEVFormer [19]	R101 [†]			0.445	0.535	0.631	0.257	0.405	0.435	0.143
PolarFormer [13]	R101 [†]			0.457	0.543	0.612	0.257	0.392	0.467	0.129
FrustumFormer	R101 [†]			0.478	0.561	0.575	0.257	0.402	0.411	0.132
DD3D [28]‡	V2-99*			0.418	0.477	0.572	0.249	0.368	1.014	0.124
DETR3D‡ [36]	V2-99*	✓		0.412	0.479	0.641	0.255	0.394	0.845	0.133
Ego3RT [25]	V2-99*			0.425	0.473	0.549	0.264	0.433	1.014	0.145
M2BEV [40]	X-101			0.429	0.474	0.583	0.254	0.376	1.053	0.190
BEVDet4D‡ [11]	Swin-B	✓		0.451	0.569	0.511	0.241	0.386	0.301	0.121
UVTR [17]	V2-99*			0.472	0.551	0.577	0.253	0.391	0.508	0.123
BEVFormer [19]	V2-99*			0.481	0.569	0.582	0.256	0.375	0.378	0.126
PolarFormer [13]	V2-99*			0.493	0.572	0.556	0.256	0.364	0.440	0.127
PETRv2 [23]	V2-99*			0.490	0.582	0.561	0.243	0.361	0.343	0.120
BEVDepth [‡] [18]	V2-99*	✓	✓	0.503	0.600	0.445	0.245	0.378	0.320	0.126
BEVStereo [16]	V2-99*	✓	 ✓ 	0.525	0.610	0.431	0.246	0.358	0.357	0.138
FrustumFormer	V2-99*			0.516	0.589	0.555	0.249	0.372	0.389	0.126

nuScenes validation set:

Methods	Backbone	CBGS	LiDAR	mAP↑	NDS↑	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
FCOS3D [35]	R101 [†]			0.295	0.372	0.806	0.268	0.511	1.315	0.170
DETR3D [36]	R101 [†]	✓		0.349	0.434	0.716	0.268	0.379	0.842	0.200
PGD [34]	R101 [†]			0.358	0.425	0.667	0.264	0.435	1.276	0.177
PETR [22]	R101 [†]	✓		0.370	0.442	0.711	0.267	0.383	0.865	0.201
UVTR [17]	R101 [†]			0.379	0.483	0.731	0.267	0.350	0.510	0.200
BEVFormer [19]	R101 [†]			0.416	0.517	0.673	0.274	0.372	0.394	0.198
PolarFormer [13]	R101 [†]			0.432	0.528	0.648	0.270	0.348	0.409	0.201
BEVDepth [18]	R101	✓	\checkmark	0.412	0.535	0.565	0.266	0.358	0.331	0.190
STS [38]	R101	✓	\checkmark	0.431	0.542	0.525	0.262	0.380	0.369	0.204
FrustumFormer	R101 [†]			0.457	0.546	0.624	0.265	0.362	0.380	0.191

We achieve **SOTA performance** on nuScenes test/val set without extra LiDAR supervision

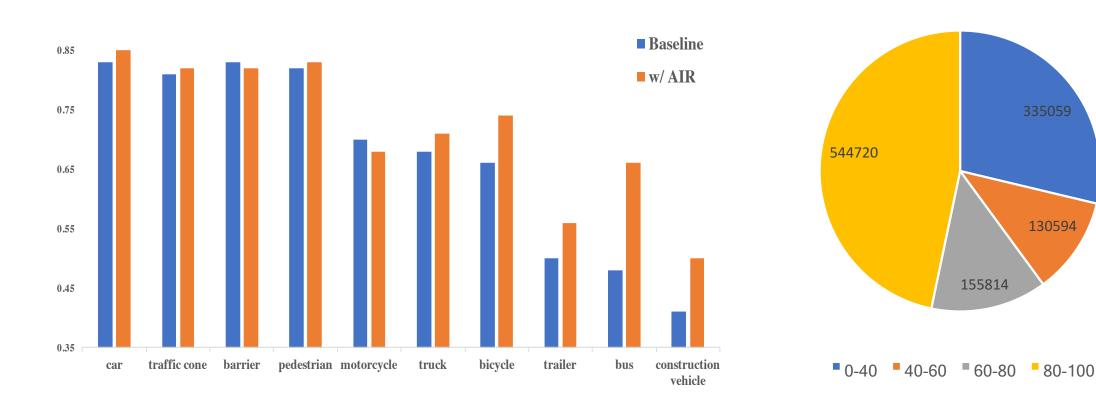
Ablation of Components in FrustumFormer

	IF	OM	FF	mAP↑	NDS↑	mATE↓
(a)				0.318	0.366	0.771
(b)	\checkmark			0.326	0.373	0.765
(c)		\checkmark		0.328	0.381	0.759
(d)	\checkmark	\checkmark		0.337	0.383	0.749
(e)	\checkmark	\checkmark	\checkmark	0.360	0.463	0.719

Ablation of Instance-aware Sampling

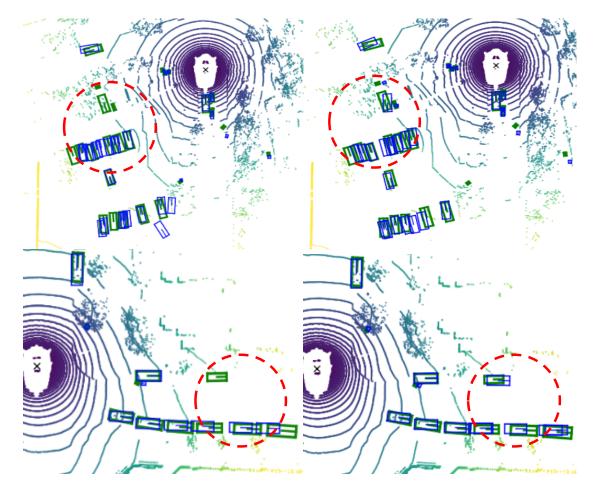
	Total	Scene	Instance	mAP↑	NDS↑
(a)	$1 \times$	$ 1 \times$	-	0.318	0.366
(b)	$2 \times$	$2\times$	-	0.318	0.362
(c)	$2 \times$	$1 \times$	1×	0.326	0.373

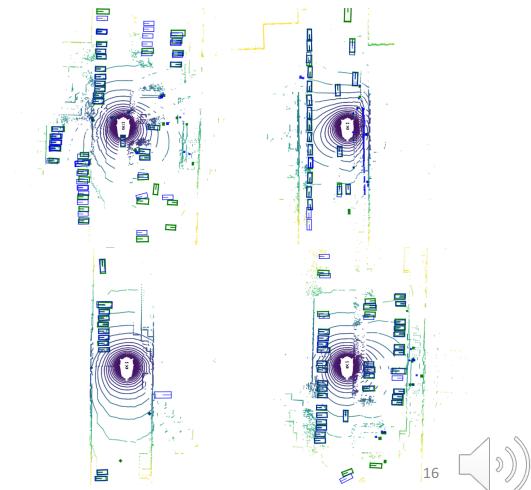
Ablation of Occupancy Mask Learning

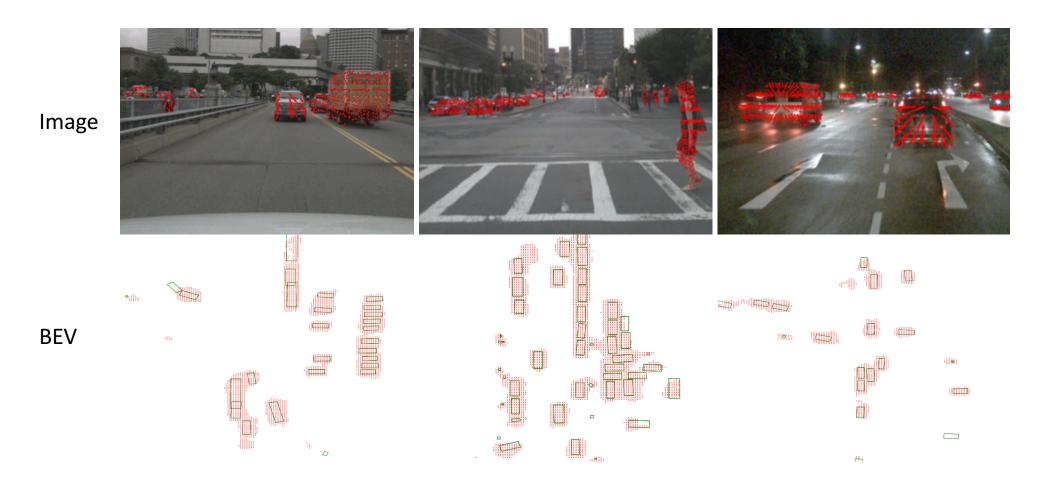

	Supervision	$\mid \alpha$	mAP↑	NDS↑	mATE↓
(a)	w/o	0.0	0.318	0.366	0.771
(b)	w/ BEV box*	5.0	0.324	0.374	0.756
(c)	w/ BEV box	5.0	0.328	0.381	0.759
(d)	w/ BEV box	10.0	0.322	0.381	0.749
(e)	w/ BEV box	1.0	0.326	0.379	0.751

Ablation of Temporal Frustum Fusion

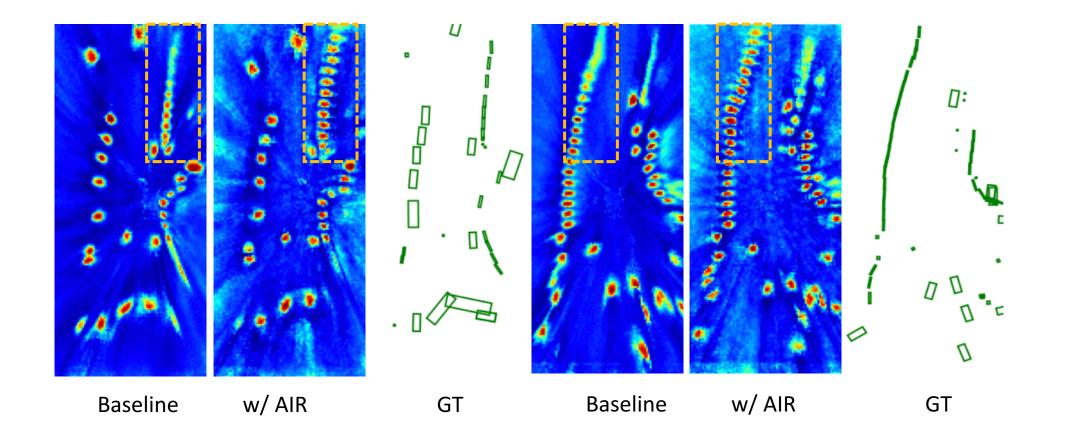
	W	K	Frustum	mAP↑	NDS↑	mAVE↓
(a)	4	2		0.353	0.454	0.497
(b)	4	2	\checkmark	0.355	0.457	0.479
(c)	8	4	\checkmark	0.360	0.463	0.463
(d)	16	4	\checkmark	0.364	0.457	0.568




Recall Improvement Under Low Visibility(0-40%)


Visibility

Recall Improvement Under Low Visibility(0-40%)



> Instance Queries Visualization

BEV Feature Visualization

Thanks For Your Listening

Paper link: https://arxiv.org/pdf/2301.04467.pdf Code link: https://github.com/Robertwyq/Frustum

