

Learning Geometric-aware Properties in 2D Representation Using Lightweight CAD Models, or Zero Real 3D Pairs

Pattaramanee Arsomngern

Sarana Nutanong

Supasorn Suwajanakorn

Improving 2D representation with 3D priors

Improving 2D representation with 3D priors

Improving 2D representation with 3D priors

Prior work uses *heavyweight* 3D scene scans.

Pri3D (Hou et al. 2021)

Image credit: Pri3D (Hou et al. 2021)

Prior work uses *heavyweight* 3D scene scans.

Our method: Utilizing *lightweight* CAD models as a 3D prior

Pri3D (Hou et al. 2021)

Key idea: Joint 2D-3D space with Chamfer Distance

State-of-the-art performance

mIOU Improvement from 2D-only methods

mIOU difference from methods using 3D scenes

- 0.16

*Compared to SimCLR (Chen et al.) NYUv2 semantic segmentation *Compared to SOTA (Set-InfoNCE, Chen et al.) NYUv2 semantic segmentation

Unlimited (psuedo) training pairs

Massive RGB data

Massive RGB-CAD pairs

Learning Geometric-aware Properties in 2D Representation Using Lightweight CAD Models, or Zero Real 3D Pairs

Pattaramanee Arsomngern

Sarana Nutanong

Supasorn Suwajanakorn

Common approach to solving 2D object understanding

2D Self-supervised encoders

SimCLR (Chen et al.)

Learning through 2D augmentations

MAE (He et al.)

Learning through 2D masked modelling

Drawbacks of 2D self-supervised encoders

Unseen view

Limited geometric information: Flipped or different crops

Better 2D understanding through 3D priors

Pri3D (Hou et al. 2021)

Image credit: Pri3D (Hou et al. 2021)

Better 2D understanding through 3D priors

Alternative 3D priors?

Pri3D (Hou et al. 2021)

Better 2D understanding through 3D priors

Pri3D (Hou et al. 2021)

Our method: Utilizing *lightweight* CAD models as 3D priors

State-of-the-art results

Improvement from

- ResNet-based 2D SSL
- ViT-based 2D SSL

Performance difference from methods with 3D scenes

** From SOTA (Set-InfoNCE, Chen et al.) on NYUv2 semantic segmentation

3 Contrastive loss functions

- 1. Geometric-aware CAD features
- 2. Discriminative visual features
- 3. Cross-modal sharing 2D-3D properties

1. Geometric-aware CAD features

2. Discriminative visual features

3. Cross-modal sharing 2D-3D properties

3. Cross-modal sharing 2D-3D properties

ROCA (Gumeli et al.)

RealFusion (Melas-Kyriazi et al.)

Acquired pseudo-pairs

Unlimited availability of training pairs

Experimental results

Semantic segmentation task

				N	YUv2	Sc	anNet	indoo	r ADE20k	SUNRGB-D		
Arch.	GT pair	Method	3D	mIoU	mIoU [25]	mIoU	mIoU [25]	mIoU	mIoU [25]	mIoU	mIoU [25]	

Experimental results

Our preliminary experiment on pseudo-pairs

over SOTA (Set-InfoNCE, Chen et al. 2022) in NYUv2 semantic segmentation

* 50k RGB-CAD training pairs collected from ImageNet and COCO dataset while the original setting is Pix3D dataset with 7k ground truth pairs.

Experimental results

- Instance segmentation and object detection (NYUv2, Indoor/ Outdoor COCO)
 - Outperformed SOTA in all settings
- Object retrieval (Pix3D)
 - +3.13 (Resnet-50) and +1.75 R@1 from SOTA 2D-only works

_					NYUv2					indoor COCO					outdoor COCO							
					O	Object Det.		Instance segm.		Object Det.		Instance seg.			Object Det.			Instance seg.				
Arch.	Size	GT pair	Method	3D	AP50	AP75	AP	AP50	AP75	AP	AP50	AP75	AP	AP50	AP75	AP	AP50	AP75	AP	AP50	AP75	AP
RN50		2D only	SupImg	-	29.9	17.3	16.8	25.1	13.9	13.4	41.78	24.21	23.70	39.16	23.35	22.61	46.09	26.98	28.08	42.45	23.34	23.92
			SimCLR	-	32.81	20.15	19.24	29.10	15.97	15.62	43.63	26.46	25.45	40.87	24.79	23.86	48.15	28.75	30.40	44.31	25.01	24.99
			SupCon	-	33.23	20.36	19.63	29.44	16.16	15.83	43.66	26.34	25.32	40.84	24.53	23.75	47.89	28.67	30.29	44.16	24.63	24.97
			SupCon (fine)	-	32.56	19.74	18.92	29.06	16.11	15.74	43.58	25.95	25.21	40.65	24.22	23.66	45.01	27.90	26.59	41.97	25.61	24.66
	480	pseudo	Ours (pseudo)	CAD	34.45	20.27	19.72	29.64	16.24	16.13	43.74	26.47	25.48	40.92	24.77	23.91	-	-	-	-	-	-
			CrossPoint	CAD	28.42	15.94	15.22	24.49	13.32	13.11	40.25	22.78	22.26	38.54	21.92	20.80	43.22	24.57	25.60	39.75	21.93	21.11
		2D 3D	Pri3D	scene	34.0	20.4	19.4	29.5	16.3	15.8	43.49	26.40	25.22	40.71	24.72	23.61	-	-	-	-	-	-
		20-50	Set-InfoNCE	scene	34.6	20.5	19.7	29.7	16.3	16.5	-	-	-	-	-	-	-	-	-	-	-	-
			Ours	CAD	34.85	20.89	20.12	30.03	16.51	16.84	44.11	26.78	25.69	41.02	24.91	24.08	49.03	29.80	31.62	45.23	25.90	25.85
	224	2D only	SupImg	-	34.40	19.24	19.06	28.42	14.05	14.97	31.45	20.63	19.41	29.77	18.73	17.82	33.56	23.19	21.81	31.68	19.52	18.11
			DINO	-	33.03	18.62	17.91	26.82	14.56	14.73	27.70	16.24	15.87	25.78	14.86	14.76	32.57	22.13	20.61	29.86	18.07	17.66
ViT-B			MAE	-	35.92	19.30	19.24	29.88	16.01	15.82	31.54	20.59	19.33	29.92	18.65	17.83	36.97	24.51	23.12	33.67	20.15	19.46
		pseudo	Ours (pseudo)	CAD	36.24	19.78	19.72	30.10	15.94	16.05	31.78	20.74	19.46	30.01	19.07	17.94	-	-	-	-	-	-
		2D-3D	Ours	CAD	36.31	19.91	19.94	30.30	16.16	16.27	32.02	21.04	19.67	30.16	19.02	18.09	37.74	24.92	23.42	34.13	20.49	19.89

Full information in the paper!

Conclusion

- Learning geometric-aware 2D representaion via CAD models
- Competitive performance to methods that use 3D scenes
- Can be trained on synthetic data

Thank you for listening!

Please visit GeoAware2dRepUsingCAD.github.io for a full paper