

Yunhao Bai¹ Duowen Chen¹ Qingli Li¹ Wei Shen² Yan Wang^{1*}

¹Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University

²MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

{yhbai@stu., duowen_chen@stu., qlli@cs., ywang@cee.}ecnu.edu.cn, wei.shen@sjtu.edu.cn

Yunhao Bai, Duowen Chen, Qingli Li, Wei Shen, and Yan Wang

Semi-supervised segmentation

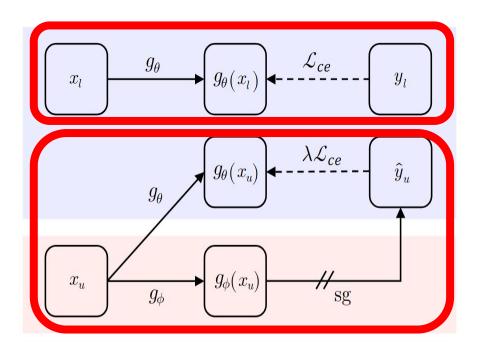
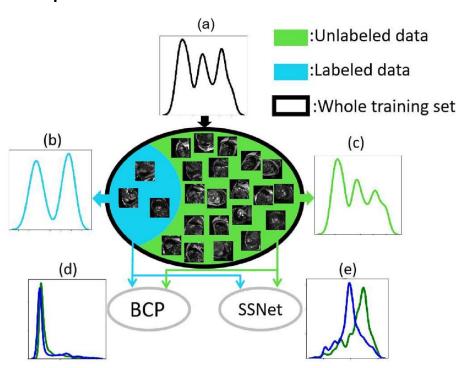


Figure of paper: Learning from Future: A Novel Self-Training Framework for Semantic Segmentation (NIPS 2022)

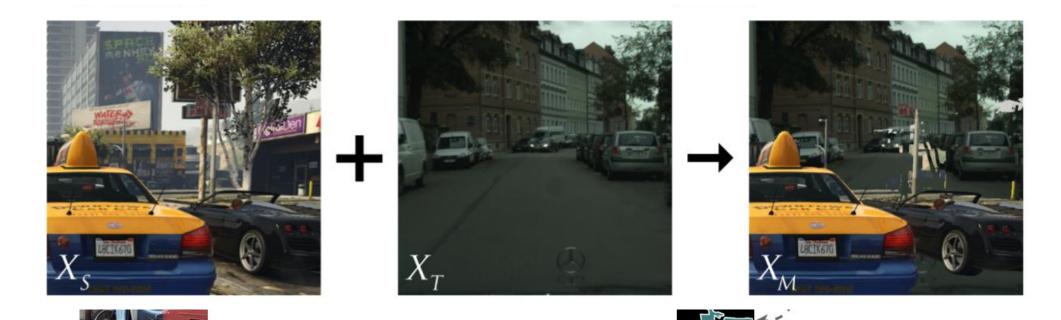
Method	Scans used		Metrics				
	Labeled	Unlabeled	Dice†	Jaccard [†]	95HD↓	ASD↓	
U-Net	3(5%)	0	47.83	37.01	31.16	12.62	
U-Net	7(10%)	0	79.41	68.11	9.35	2.70	
U-Net	70(All)	0	91.44	84.59	4.30	0.99	
UA-MT	3(5%) 67(95%)		46.04	35.97	20.08	7.75	
SASSNet			57.77	46.14	20.05	6.06	
DTC			56.90	45.67	23.36	7.39	
URPC		67(95%)	55.87	44.64	13.60	3.74	
MC-Net		62.85	52.29	7.62	2.33		
SS-Net			65.83	55.38	6.67	2.28	
Ours		ſ	87.59 † 21.76	78.67 †23.29	1.90 14.77	0.67 11.61	
UA-MT			81.65	70.64	6.88	2.02	
SASSNet		63(90%)	84.50	74.34	5.42	1.86	
DTC			84.29	73.92	12.81	4.01	
URPC	7(10%)		83.10	72.41	4.84	1.53	
MC-Net	35,11125	86.44	77.04	5.50	1.84		
SS-Net			86.78	77.67	6.07	1.40	
Ours			88.84 + 2.06	80.62 + 2.95	3.98 12.09	1.17 10.23	


Table 3. Comparisons with state-of-the-art semi-supervised segmentation methods on the ACDC dataset.


Yunhao Bai, Duowen Chen, Qingli Li, Wei Shen, and Yan Wang

1. Motivation

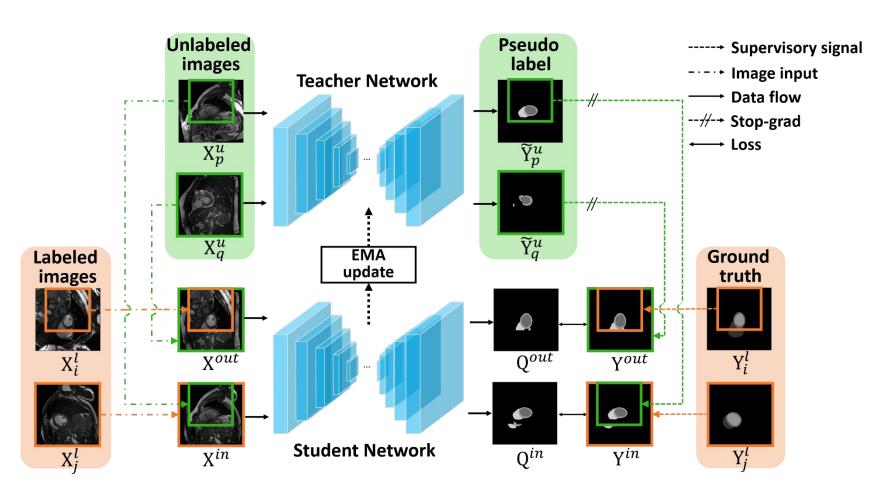
• a) Empirical distribution mismatch:



Yunhao Bai, Duowen Chen, Qingli Li, Wei Shen, and Yan Wang

1. Motivation

• b) CutMix (Copy-Paste, CP) could be used better:



Yunhao Bai, Duowen Chen, Qingli Li, Wei Shen, and Yan Wang

2. Method

Yunhao Bai, Duowen Chen, Qingli Li, Wei Shen, and Yan Wang

3. Experiments

Method	Scans used		Metrics				
Method	Labeled	Unlabeled	Dice†	Jaccard [↑]	95HD↓	ASD↓	
V-Net	4(5%)	0	52.55	39.60	47.05	9.87	
V-Net	8(10%)	0	82.74	71.72	13.35	3.26	
V-Net	80(All)	0	91.47	84.36	5.48	1.51	
UA-MT			82.26	70.98	13.71	3.82	
SASSNet			81.60	69.63	16.16	3.58	
DTC			81.25	69.33	14.90	3.99	
URPC	4(5%)	76(95%)	82.48	71.35	14.65	3.65	
MC-Net			83.59	72.36	14.07	2.70	
SS-Net			86.33	76.15	9.97	2.31	
Ours			88.02 1.69	78.72 12.57	7.90 \ 2.07	2.15\10.16	
UA-MT			87.79	78.39	8.68	2.12	
SASSNet			87.54	78.05	9.84	2.59	
DTC			87.51	78.17	8.23	2.36	
URPC	8(10%)	72(90%)	86.92	77.03	11.13	2.28	
MC-Net	I I I I I I I I I I I I I I I I I I I		87.62	78.25	10.03	1.82	
SS-Net			88.55	79.62	7.49	1.90	
Ours			89.62 1.07	81.31 1.69	6.81 \ 0.68	1.76\\0.14	

Table 1. Comparisons with state-of-the-art semi-supervised segmentation methods on LA dataset. Improvements compared with the second best results are highlighted.

Method	Scans used		Metrics				
Method	Labeled	Unlabeled	Dice†	Jaccard [†]	95HD↓	ASD↓	
V-Net	12(20%)	50(80%)	69.96	55.55	14.27	1.64	
DAN			76.74	63.29	11.13	2.97	
ADVNET			75.31	61.73	11.72	3.88	
UA-MT			77.26	63.82	11.90	3.06	
SASSNet			77.66	64.08	10.93	3.05	
DTC			78.27	64.75	8.36	2.25	
CoraNet			79.67	66.69	7.59	1.89	
Ours			82.91 + 3.24	70.97 14.28	6.43 1.16	2.25 10.61	

Table 2. Comparisons with state-of-the-art semi-supervised segmentation methods on the Pancreas-NIH dataset.

Method	Scans used		Metrics				
Method	Labeled	Unlabeled	Dice†	Jaccard [†]	95HD↓	ASD↓	
U-Net	3(5%)	0	47.83	37.01	31.16	12.62	
U-Net	7(10%)	0	79.41	68.11	9.35	2.70	
U-Net	70(All)	0	91.44	84.59	4.30	0.99	
UA-MT			46.04	35.97	20.08	7.75	
SASSNet			57.77	46.14	20.05	6.06	
DTC			56.90	45.67	23.36	7.39	
URPC	3(5%)	67(95%)	55.87	44.64	13.60	3.74	
MC-Net	20.00		62.85	52.29	7.62	2.33	
SS-Net			65.83	55.38	6.67	2.28	
Ours			87.59 21.76	78.67 23.29	1.90 \ 4.77	$0.67 \downarrow 1.61$	
UA-MT			81.65	70.64	6.88	2.02	
SASSNet			84.50	74.34	5.42	1.86	
DTC			84.29	73.92	12.81	4.01	
URPC	7(10%)	63(90%)	83.10	72.41	4.84	1.53	
MC-Net			86.44	77.04	5.50	1.84	
SS-Net			86.78	77.67	6.07	1.40	
Ours			88.84 12.06	80.62 \(\frac{1}{2}.95 \)	3.98\2.09	1.17\plue0.23	

Table 3. Comparisons with state-of-the-art semi-supervised segmentation methods on the ACDC dataset.

Yunhao Bai, Duowen Chen, Qingli Li, Wei Shen, and Yan Wang

3. Experiments

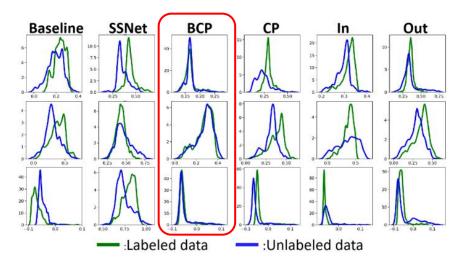


Figure 5. Kernel dense estimations of different methods, trained on 10% labeled ACDC dataset. Top to bottom are kernel dense estimations of features belong to three different class of ACDC: right ventricle, myocardium and left ventricle. Baseline: Only labeled data are used to train the network. *CP*, *In* and *Out* are same as Table 4. It can be seen that our BCP could make the features of labeled data and unlabeled data align better. Furthermore, the outstanding performance of our method compared with *In* and *Out* demonstrates the necessity of *bidirectional* copy-paste.

BCP	nms	Pre-Train	Dice†	Jaccard [↑]	95HD↓	ASD↓
			47.62	36.61	29.02	11.46
√			83.26	72.71	23.90	7.49
1	1		82.33	72.76	9.78	4.74
1	1	✓	87.59	78.67	1.90	0.67

Table 10. Ablation on ACDC dataset with 5% labeled data, $\alpha=0.5$ across all experiments. nms: Post-processing the pseudo-labels for unlabeled data. Pre-Train: Initialized from a pre-trained model with copy-paste on labeled data.