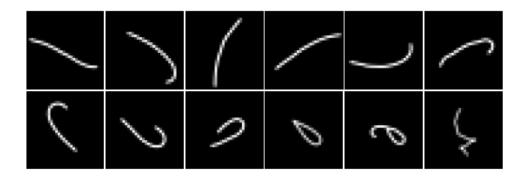
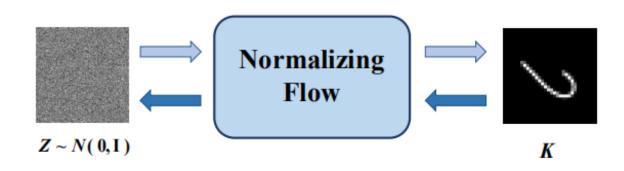


Self-supervised Non-uniform Kernel Estimation with Flowbased Motion Prior for Blind Image Deblurring

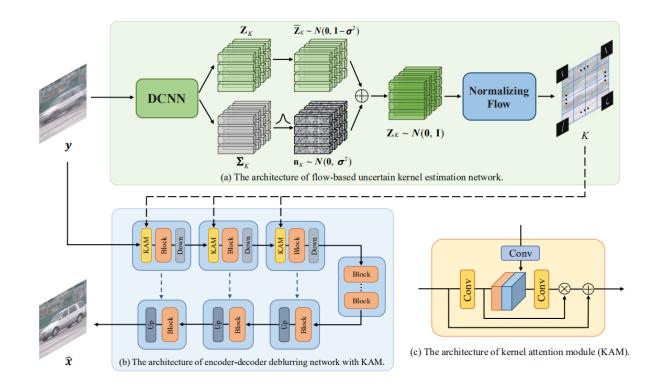
Zhenxuan Fang¹ Fangfang Wu^{1*} Weisheng Dong¹ Xin Li² Jinjian Wu¹ Guangming Shi¹ ¹Xidian University ²West Virginia University

zxfang@stu.xidian.edu.cn wufangfang@xidian.edu.cn wsdong@mail.xidian.edu.cn xin.li@mail.wvu.edu jinjian.wu@mail.xidian.edu.cn gmshi@xidian.edu.cn


• Most blind image deblurring methods ignore the prior information about motion blur, and accurate estimation of spatially varying blur kernels is challenging.



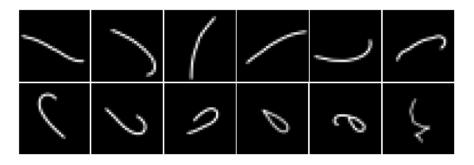
• We propose to represent the non-uniform motion blur kernels in a latent space by normalizing flow. Our latent space approach allows CNNs to predict spatially varying latent codes rather than kernels.



- We introduce uncertainty learning to the latent code estimation process to improve performance and robustness.
- We tackle the problem of lacking motion kernel ground truth in a self-supervised manner.

$$\mathcal{L}_{KE} = \frac{1}{N} \sum_{n=1}^{N} \|\boldsymbol{x}_n \otimes f_{\boldsymbol{\theta}}[\mathbf{G}(\boldsymbol{y}_n)] - \boldsymbol{y}_n\|_1,$$

Introduction

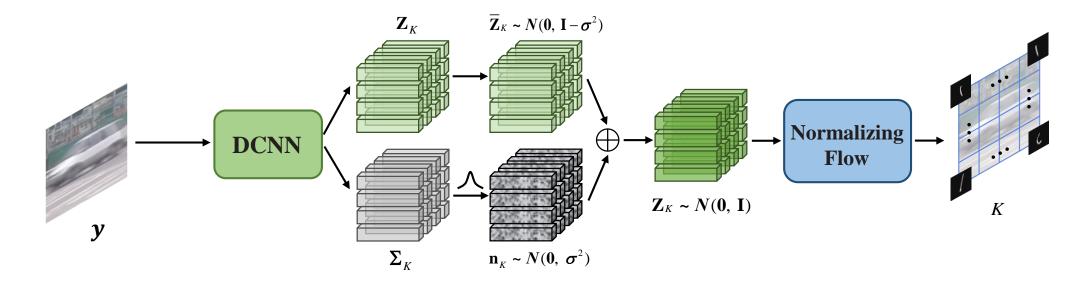

• Blind single image deblurring can be mathematically formulated as

 $y = \mathbf{B}(x, k) + n,$

- Existing deep learning-based methods have been proposed for blind image deblurring, but they have limitations
 - The characteristics of blur in real scenarios are complex, accurate estimation of non-uniform blur kernel is challenging.
 - > End-to-end methods ignore the information of motion prior.

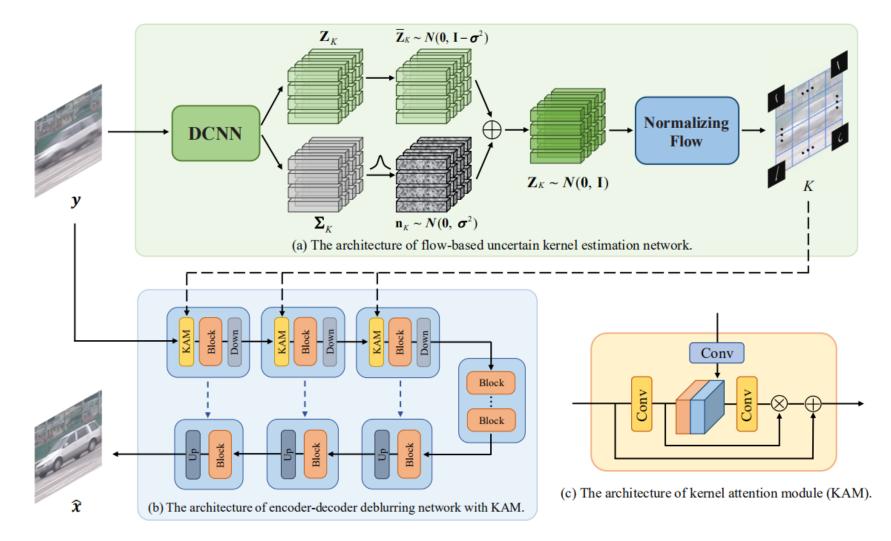
- Represent the complex motion blur kernel into a simple Gaussian distribution by a normalizing flow.
 - \succ The simulated motion blur kernels.

> The flow-based motion prior model.


Proposed Method

- Self-supervised Kernel Estimation in Latent Space
 - To overcome the problem of lacking ground truth of blur kernel, we propose to estimate the blur kernel in a self-supervised manner

$$\mathcal{L}_{KE} = \frac{1}{N} \sum_{n=1}^{N} \|\boldsymbol{x}_n \otimes f_{\boldsymbol{\theta}}[\mathbf{G}(\boldsymbol{y}_n)] - \boldsymbol{y}_n\|_1$$


> The architecture of flow-based uncertain kernel estimation network with uncertainty learning

Proposed Method

• Uncertain Flow-based Prior Network (UFPNet)

• Training process

- I. Pretrain the normalizing flow model to represent the motion blur kernel into a Gaussian distribution
- II. The self-supervise loss is use to pretrain the kernel estimation network

$$\mathcal{L}_{KE} = \frac{1}{N} \sum_{n=1}^{N} \|\boldsymbol{x}_n \otimes f_{\boldsymbol{\theta}}[\mathbf{G}(\boldsymbol{y}_n)] - \boldsymbol{y}_n\|_1$$

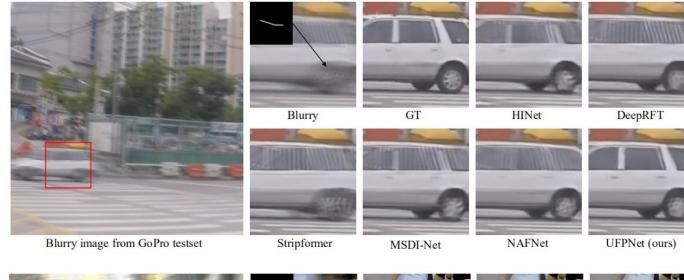
III. The PSNR loss is used to train the deblurring network, meanwhile, we use the reblur loss which can be expressed as

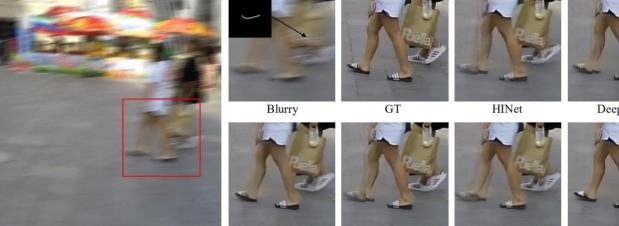
$$\mathcal{L}_{reblur} = \frac{1}{N} \sum_{n=1}^{N} \|\mathcal{F}(\boldsymbol{y}_n) \otimes \mathcal{K}(\boldsymbol{y}_n) - \boldsymbol{y}_n\|_1,$$

• The comparison results on the benchmark datasets

Method	GoPro		HIDE		RealBlur-R		RealBlur-J		Params
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	(M)
DeepDeblur [27]	29.23	0.916	N/A	N/A	32.51	0.841	27.87	0.827	11.7
SRN [38]	30.26	0.934	28.36	0.915	35.66	0.947	28.56	0.867	6.8
DeblurGAN [19]	28.70	0.858	24.51	0.871	33.79	0.903	27.97	0.834	N/A
DeblurGAN-v2 [20]	29.55	0.934	26.61	0.875	35.26	0.944	28.70	0.866	60.9
DBGAN [49]	31.10	0.942	28.94	0.915	N/A	N/A	N/A	N/A	11.6
DMPHN [48]	31.20	0.945	29.09	0.924	35.70	0.948	28.42	0.860	21.7
MT-RNN [31]	31.15	0.945	29.15	0.918	N/A	N/A	N/A	N/A	2.6
SAPHN [36]	31.85	0.948	29.98	0.930	N/A	N/A	N/A	N/A	23.0
MIMO-UNet [7]	32.45	0.957	29.99	0.930	35.54	0.947	27.63	0.837	16.1
MPRNet [47]	32.66	0.959	30.96	0.939	35.99	0.952	28.70	0.873	20.1
HINet [5]	32.71	0.959	30.32	0.932	35.75	0.949	28.17	0.849	88.7
DeepRFT [26]	33.23	0.963	31.42	0.944	35.86	0.950	28.97	0.884	23.0
Stripformer [39]	33.08	0.962	31.03	0.940	36.07	0.952	28.82	0.876	20.0
MSDI-Net [22]	33.28	0.964	31.02	0.940	35.88	0.952	28.59	0.869	135.4
NAFNet [4]	33.69	0.967	31.32	0.943	35.50	0.953	28.32	0.857	67.8
UFPNet (ours)	34.06	0.968	31.74	0.947	36.25	0.953	29.87	0.884	80.3

Mathad	RealB	lur-R	RealBlur-J		
Method	PSNR	SSIM	PSNR	SSIM	
DeblurGAN-v2 [20]	36.44	0.935	29.69	0.870	
SRN [38]	38.65	0.965	31.38	0.909	
MIMO-UNet [7]	N/A	N/A	31.92	0.919	
MPRNet [47]	39.31	0.972	31.76	0.922	
DeepRFT [26]	39.84	0.972	32.19	0.931	
Stripformer [39]	39.84	0.974	32.48	0.929	
UFPNet (ours)	40.61	0.974	33.35	0.934	


(2) The models are trained on the RealBlur dataset


(1) The models are trained on the GoPro dataset

Experimental Results

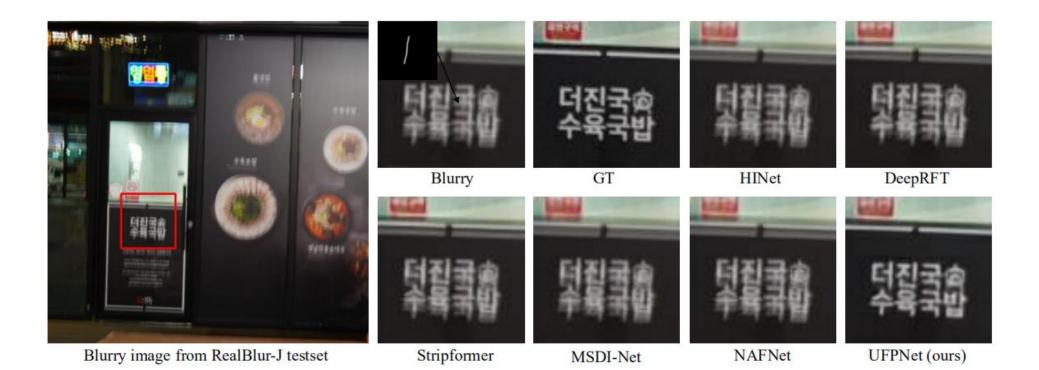
• Visual comparison to other methods

Stripformer

MSDI-Net

NAFNet

UFPNet (ours)



Experimental Results

• Visual comparison to other methods

• Ablation Studies

Whyte et al. [40]	Proposed KE-Net			GoPro		HIDE		RealBlur-R		RealBlur-J	
Whyte et al. [40]	Baseline	Flow prior	UL	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
				33.69	0.967	31.32	0.943	35.50	0.951	28.32	0.857
\checkmark				33.74	0.967	31.38	0.944	35.61	0.951	28.79	0.863
	\checkmark			33.78	0.967	31.45	0.945	35.78	0.952	29.13	0.869
	\checkmark	\checkmark		33.83	0.967	31.53	0.946	35.91	0.952	29.32	0.872
	\checkmark	\checkmark	\checkmark	34.06	0.968	31.74	0.947	36.25	0.953	29.87	0.884

Whyte et al. [40]	Prop	osed KE-Net	PSNR	SSIM	
	Baseline	Flow prior	UL	FSINK	33111
√				41.63	0.989
	\checkmark			43.90	0.993
	\checkmark	\checkmark		44.56	0.994
	\checkmark	\checkmark	\checkmark	45.92	0.996

Method	KE	Gol	Pro	HI	HIDE		
Weulou		PSNR	SSIM	PSNR	SSIM		
MIMO-UNet [7]	×	32.45	0.957	29.99	0.930		
WINO-UNet [7]	\checkmark	32.83	0.959	30.16	0.931		
MPRNet [47]	×	32.66	0.959	30.96	0.939		
MPRIvet [47]	\checkmark	33.04	0.967	31.13	0.941		
NIAENIAL [4]	×	33.69	0.964	31.32	0.943		
NAFNet [4]	\checkmark	34.06	0.968	31.74	0.947		

Conclusions

- In this paper, we propose to represent the motion blur kernels in a latent space by a normalizing flow and designing CNNs to predict spatially varying latent codes instead of motion kernels.
- To further improve the accuracy and robustness of kernel estimation, we introduce uncertainty learning into the process of estimating latent codes.
- To address the issue of the lack of ground truth about the non-uniform motion kernel in real-world images, we tackle the training set generation in a self-supervised manner.
- Extensive experimental results on benchmark datasets show that the proposed method significantly outperforms existing state-of-the-art methods and demonstrated excellent generalization performance from GoPro to other real-world blur datasets.

THANK YOU FOR WATCHING!