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to utilize reflectivity-prior descriptors and adapt the Mean 
Teacher framework to generate high-quality pseudo-labels

training >
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loss function
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to fix the trained teacher model prediction in a CRB manner, 
expanding dataset with Reflec-TTA during test time
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taking 3D voxels as input

submanifold sparse convolution
pointwise convolution
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Sparse Depthwise Separable Convolution
to reduce trainable network without loss
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going through the Sparse Depthwise Convolution
to perform convolution with the trainable parameter reduction
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going through the Sparse Pointwise Convolution
to mix the information across different channels
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submanifold sparse convolution
pointwise convolution

Sparse Depthwise Separable Convolution
to reduce trainable network without loss



Less is More: Reducing Task and Model Complexity for 
3D Point Cloud Semantic Segmentation, CVPR 2023, Li, Shum, Breckon

sparseN
Sparse Pointwise Convolution

1 1
M

N

HF
WF

…

…

LF

sparse

M

Sparse Depthwise Convolution

HF
WFDk

……

Dk

M

LF

sparse

HF
WF

Input tensor F

…

LF

M

11

Cylinder3D

Ozan et al.

2DPASS

MinkowskiNet

SPVNAS

LiM3D+SDSC
(ours) LiM3D

(ours)

50 500 5000 50000
Multiply-Adds (Millions)

● SemanticKITTI
● ScribbleKITTI

Ozan et al.

2DPASS

2DVNAS

Cylinder3D
MinkowskiNet

LiM3D+SDSC
(ours) LiM3D

(ours)

30

35

40

45

50

55

60

0 20 40 60

mI
oU

 (%
)

# Parameters (Millions)

model size reduction

fewer multiply-adds

with our 
we can achieve: 

submanifold sparse convolution
pointwise convolution

Sparse Depthwise Separable Convolution
to reduce trainable network without loss



Less is More: Reducing Task and Model Complexity for 
3D Point Cloud Semantic Segmentation, CVPR 2023, Li, Shum, Breckon

Spatio-Temporal Redundant Frame 
Downsampling (ST-RFD)

sequence
frame frame frame frame frame frame frame frame

!(          t      ,          t+1       )

✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕

sampling ratemean(!) select ki frames

divided
into subsets sampled sequence

inp
ut

ou
tpu
t

12

Using ST-RFD to extract a maximally diverse data subset for training by removing temporal redundancy and 
hence future annotation requirements
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computing the similarity between 
temporally adjacent frames 
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Using Unreliable Pseudo-labels
to Make Full Use of All Available Labels
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Using reflectivity-based Test Time Augmentation
to enhance performance of false or non-existent pseudo-labels
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Reflectivity is 

a distance-normalized intensity feature 

1
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Using reflectivity-based Test Time Augmentation
to enhance performance of false or non-existent pseudo-labels
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we apply various sizes of bins in cylindrical coordinates to analyze the 
intrinsic point distribution at varying resolutions (shown in h1, h2 and h3).

1 2
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Using reflectivity-based Test Time Augmentation
to enhance performance of false or non-existent pseudo-labels

1 2 3 4 5 6 7 8 9 10

!!     = {ℎ!(") ∣ % ∈ [1, '#]} ∈ ℝ$! , * ∈ [1, +],ℎ!(")   =  ⋕ {.% ∈ /", ∀1 ∣ 2% ∈ 3!}/"     = [(% − 1)/'#, %/'#), % ∈ [1, '# ].  

A
A
A

A
A

A
A
A

A
A
A

A
A
Ar

2r
3r

S
source strength

4"#!
sphere area

intensity at 
sphere surface I

…

! = "#2 = $4%#2 ⋅ #2 ∝ $ 

reflectivity

h1

h1
h2

h3

h2

h3

!⊛ = {""/max("") ∣ $ ∈ [1, &]} ∈ ℝ#$!  ! ⊛ = {" ∣ ($, %, &, ' , (⊛) ∈ ℝ"#!+4} 
normalize

augmentation

20

1 2

3

we then normalize it and append to the point set 
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Qualitative results
Comparing {5%, 10%, 20%, 40%} labeled splits
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Qualitative results
5%-Labeled Frames
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Comparative mIoU 
for Semi-supervised Methods
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Component-wise Ablation (Ours)
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The Computation Cost and mIoU
Under 5%-labeled Training Results
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Effects of ST-RFD Sampling
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Effects of ST-RFD Sampling
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Effects of Differing Reliability
Using Pseudo Voxels
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Reflectivity (Reflec-TTA)
vs. Intensity (Intensity-based TTA)
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