

Progressive Random Convolutions for Single Domain Generalization

Seokeon Choi¹, Debasmit Das², Sungha Choi¹, Seunghan Yang¹, Hyunsin Park¹, Sungrack Yun¹

¹Qualcomm Korea YH ²Qualcomm Technologies, Inc.

Presenter: Seokeon

Engineer, Senior

Experiments

Overview

Progressive Random Convolution for Single Domain Generalization

- Deep neural networks often struggle to generalize to out-of-distribution data.
- We propose a simple and lightweight image augmentation technique based on Progressive Random Convolutions.

Motivation

Progressive Random Convolution for Single Domain Generalization

Random Convolutions (ICLR'21)

A single convolution layer (randomly initialized) - Structural limitations •

RandConv (ICLR'21)

Input image $[C_{in} \times 32 \times 32]$

$$w \sim N\left(0, \frac{1}{k^2 C_{in}}\right)$$

orithm 🍃

Motivation

Progressive Random Convolution for Single Domain Generalization

Random Convolutions (ICLR'21)

• Structural limitations (Single convolution layer): the problems of limited diversity and semantic distortion

Limitations

- Artificial patterns
- Semantic distortion

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

Effective Receptive Fields (ERF): how much each input pixel can influence one output pixel

hod 🍃 🖉

Experiments

Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 $\{Conv3\}_k^{\mathbf{5}}$ Theoretical {Conv3} onv1 receptive fields 11 × 11 $\{Conv3\}^{10}$ $\{Conv3\}_k^{10}$ Theoretical onv2 receptive fields 21 × 21 $\{Conv3\}_k^{20}$ {Conv3}²⁰ Theoretical Conv41 receptive fields 41×41 RandConv (ICLR'21) Progressive (different weights) Progressive (same weights) The Effective Receptive Field [*] Different weight Same weight occupies only a fraction of the full theoretical receptive field. Different kernel size 6 L layers L layers $k \in \{1, 3, 5, ..\}$

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

nod 🧪 🖉

Experiments

Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 $\{Conv3\}_k^{\mathbf{5}}$ Theoretical {Conv3} onv1 receptive fields 11 × 11 $\{Conv3\}^{10}$ $\{Conv3\}_k^{10}$ Theoretical onv2 receptive fields 21 × 21 $\{Conv3\}_k^{20}$ {Conv3}²⁰ Theoretical Conv41 receptive fields 41×41 RandConv (ICLR'21) Progressive (different weights) Progressive (same weights) • Different *w*: irregular patterns Different weight Same weight Different kernel size 8 L layers L layers $k \in \{1, 3, 5, ..\}$

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

RandConv (ICLR'21) < Progressive approach with different weights < Progressive approach with the same weights (better)

More effective

Progressive Random Convolution for Single Domain Generalization

Main contribution 2: Random convolution blocks (Advanced design)

Texture diversification by random deformable convolution: a generalized version of random convolutions •

Distortion scale of deformable offsets

Experiments

Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 2: Random convolution blocks (Advanced design)

• Contrast diversification by random style transfer (AdaIN): the role of random gamma correction

Random convolution block

 γ : Affine transformation $\Rightarrow \gamma \sim N(0, \sigma_{\gamma}^2)$

 β : Affine transformation $\Rightarrow \beta \sim N(0, \sigma_{\beta}^2)$

Affine transformation (β)

Progressive Random Convolution for Single Domain Generalization

Main contribution 2: Random convolution blocks (Advanced design)

• RandConv (ICLR'21) < Basic design (Different weights) < Basic design (Same weights) < Advanced design (Same weights)

Algorithm and training pipeline

Progressive Random Convolution for Single Domain Generalization

Algori	thm 1 Pro-RandConv	
Input:	Source domain $S = \{\mathbf{x}_n, \}$	$\{y_n\}_{n=1}^{N_S}$
Outpu	t : Trained network $f_{\phi}(\cdot)$	
1: Ini	tialize network parameters	s ϕ
2: for	$t = 1$ to T_{max} do	
3:	Initialize a random con	volution block <i>G</i> :
4:	$w \sim N(0, \sigma_w^2)$	// Convolution weights
5:	$\Delta p \sim N(0, \sigma_{\Delta}^2)$	// Deformable offsets
6:	$\gamma \sim N(0, \sigma_{\gamma}^2)$ // Affin	ne transformation (gamma)
7:	$\beta \sim N(0, \sigma_{\beta}^2)$ // A	ffine transformation (beta)
8:	Progressive augmentati	on:
9:	$\mathbf{X} \sim \mathcal{S}$	// Sample a mini-batch
10:	$\mathbf{X}_0 \gets \mathbf{X}$	// Set an initial value
11:	$L \sim U(\{1, 2,, L_{max}\})$	// Repetition numbers
12:	for $l = 1$ to L do	
13:	$\mathbf{X}_l = \mathcal{G}(\mathbf{X}_{l-1})$	// Apply Pro-RandConv
14:	Training a network:	
15:	$\phi \leftarrow \phi - \alpha \nabla_{\phi} \mathcal{L}_{\text{task}}(\mathbf{X}_0,$	$\mathbf{X}_L; \phi$) // Network update

Progressive Augmentation

Experimental results: Digit recognition

Progressive Random Convolution for Single Domain Generalization

• Dataset: Digits (MNIST → SVHN, MNIST-M, SYN, USPS) [Model: LeNet]

Category	Paper	Methods	MNIST → SVHN	MNIST → MNIST-M	$\begin{array}{l} MNIST \\ \rightarrow SYN \end{array}$	$\begin{array}{l} MNIST \\ \rightarrow USPS \end{array}$	Average	Gap
Baseline	-	Baseline (ERM)	32.52	54.92	42.34	78.21	52.00	-29.35
Basic Data Augmentation	-	Color jitter*	36.04	57.56	43.94	77.76	53.83	-27.52
	-	Grayscale*	32.92	55.44	42.38	78.22	52.24	-29.11
	-	Pespective*	33.63	43.86	40.92	69.12	46.88	-34.47
	-	Rotate*	31.99	54.86	38.22	69.54	48.65	-32.70
Automated Data Augmentation	CVPR'19	AutoAugment	45.23	60.53	64.52	80.62	62.72	-18.63
	CVPRW'20	RandAugment	54.77	74.05	59.60	77.33	66.44	-14.91
Adversarial Data Augmentation or Learnable Generator	NeurIPS'18	ADA	35.51	60.41	45.32	77.26	54.62	-26.73
	CVPR'20	M-ADA	42.55	67.94	48.95	78.53	59.49	-21.86
	NeurIPS'20	ME-ADA	42.56	63.27	50.39	81.04	59.32	-22.03
	ICCV'21	L2D	62.86	87.30	63.72	83.97	74.46	-6.89
	CVPR'21	PDEN	62.21	82.20	69.39	85.26	74.77	-6.58
Domain Generalization	ICCV'17	CCSA	25.89	49.29	37.31	83.72	49.05	-32.30
	CVPR'19	d-SNE	26.22	50.98	37.83	93.16	52.05	-29.30
	CVPR'19	JiGen	33.80	57.80	43.79	77.15	53.14	-28.21
	CVPR'22	MetaCNN	66.50	88.27	70.66	89.64	78.76	-2.59
Image Randomization (Non-trainable)	ICLR'21	RandConv*	61.66	84.53	67.87	85.31	74.84	-6.51
	Ours	Progressive (Diff)	60.73	78.47	71.46	88.20	74.72	-6.63
	Ours	Progressive (Same)	65.67	76.26	77.13	93.98	78.26	-3.09
	Ours	Pro-RandConv	69.67	82.30	79.77	93.67	81.35	

<Digit recognition>

Averaged accuracy on test domains

52.0% → 81.4%

* denote reproduced results

Experimental results: Object recognition

Progressive Random Convolution for Single Domain Generalization

• Dataset: PACS (4 domains: 1 domain for training, 3 domains for test) [Model: ResNet18]

Category	Paper	Methods	Art (A) → CPS	$\begin{array}{c} \text{Cartoon (C)} \\ \rightarrow \text{APS} \end{array}$	$\begin{array}{l} \text{Photo (P)} \\ \rightarrow \text{ACS} \end{array}$	$\begin{array}{c} \text{Sketch (S)} \\ \rightarrow \text{ACP} \end{array}$	Average	Gap
Baseline	-	Baseline (ERM)	74.64	73.36	56.31	48.27	63.15	-5.73
Basic Data Augmentation	-	Color jitter*	75.94	76.56	59.27	50.24	65.50	-3.38
	-	Grayscale*	74.29	75.75	58.96	47.67	64.17	-4.71
	-	Pespective*	72.29	70.17	59.99	43.79	61.31	-7.57
	-	Rotate*	73.47	71.06	56.95	46.61	62.02	-6.86
Automated Data Augmentation	CVPR'19	AutoAugment*	76.48	77.09	60.99	52.46	66.76	-2.12
	CVPRW'20	RandAugment*	76.76	78.00	62.09	56.40	68.31	-0.57
Adversarial Data Augmentation or Learnable Generator	NeurIPS'18	ADA	72.43	71.97	44.63	45.73	58.70	-10.18
	CVPR'21	SagNet	73.20	75.67	48.53	50.07	<mark>61.90</mark>	-6.98
	CVPR'22	GeoTexAug	72.07	78.70	49.07	59.97	65.00	-3.88
	ICCV'21	L2D	76.91	77.88	52.29	53.66	65.18	-3.70
lmage Randomization (Non-trainable)	ICLR'21	RandConv*	76.93	76.47	62.46	54.13	67.50	-1.38
	Ours	Progressive (Diff)	75.46	75.39	60.02	55.02	66.47	-2.41
	Ours	Progressive (Same)	76.81	78.27	62.38	56.08	68.39	-0.49
	Ours	Pro-RandConv	76.98	78.54	62.89	57.11	68.88	

<Object recognition>

Averaged accuracy on test domains

56.3% **→** 62.9%

* denote reproduced results

ethod 🥢

Experiments

Experimental results: Semantic segmentation

Progressive Random Convolution for Single Domain Generalization

Dataset: GTAV → Cityscapes [Model: DeepLabV3+]

Thank you

Qualcom

Follow us on: **in Y O P O** For more information, visit us at:

qualcomm.com & qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2023 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other products and brand names may be trademarks or registered trademarks of their respective owners. References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies are licensed by Qualcomm Incorporated.