Sibling-Attack: Rethinking Transferable Adversarial Attacks Against Face Recognition

Zexin Li¹, Bangjie Yin³, Taiping Yao³, Junfeng Guo², Shouhong Ding³, Simin Chen², and Cong Liu¹ ¹University of California, Riverside, ²The University of Texas at Dallas, ³Youtu Lab, Tencent

Poster ID: THU-PM-385

Introduction

- ➢ Transferable adversarial attack against face recognition (FR) task.
- Leverage adversarial information from multiple tasks.

Auxiliary Task Selection

- Theoretical analysis conducted in previous works supports FR and AR are highly correlated tasks.
- Empirical analysis demonstrates that AR exhibits best attacking transferability performance for intuitive multi-task attack.

Dataset	Cel	lebA-HQ	LFW		
Target Model	IR50	ResNet101	IR50	ResNet101	
FR+FR	73.40	76.00	75.80	78.20	
FR+FLD	75.20	78.10	52.00	78.60	
FR+FP	66.50	85.10	71.80	83.40	
FR+AR(Ours)	93.00	93.40	97.60	96.80	

*FR: face recognition; AR: facial attribute recognition; FP: face parsing; FLD: face landmark detection.

Optimization Framework

Joint Task Meta Optimization (JTMO)

Cross Task Gradient Stabilization (CTGS)

Quantitative Results

Sibling-Attack improves the attack success rate by 12.61% and 55.77% on average on pre-trained face recognition models and commercial face recognition systems.

	Dataset	LFW								
Methods	Source Model	IR152+FaceNet				IR152+IRSE50				
wiethous	Target Model	Offline Model		Online Model		Offline Model		Online Model		
		IR50	ResNet101	Face++	Microsoft	IR50	ResNet101	Face++	Microsoft	
	Adv-Hat [37]	1.80	9.30	1.80	0.10	5.00	13.40	2.20	0.10	
Methods Face-based Transfer-based Ours	Adv-Glasses [57]	0.80	5.00	3.70	0.00	1.90	4.90	4.70	0.00	
	Adv-Face [13]	13.80	29.70	30.70	0.40	13.80	24.80	19.00	0.40	
	Adv-Makeup [69]	2.40	9.20	5.30	0.20	4.70	12.60	5.50	0.30	
	GenAP [66]	4.20	13.60	15.20	0.30	4.30	14.50	13.90	0.50	
	PGD [45]	75.80	78.20	46.70	19.10	89.30	89.70	60.40	36.50	
Transfer-based	TAP [75]	76.90	81.00	54.10	28.60	89.60	89.60	64.30	45.60	
	MI-FGSM [17]	68.40	71.00	41.90	21.10	92.20	86.30	60.10	38.80	
	VMI-FGSM [62]	76.80	80.80	41.50	10.90	76.40	79.30	40.80	11.90	
Ours	Sibling-Attack	98.70	98.60	96.10	59.30	98.70	98.60	96.10	59.30	
		21.80↑	17.60 ↑	42.00 ↑	30.70↑	6.50 ↑	8.90↑	31.80 ↑	13.70 ↑	

Qualitative Results

Gradient responses from Sibling-Attack and the target mode (FR-W) both focus more on the similar key facial regions, interprets the stronger transferability.

Ablation Study & Analysis

Attack success rate gradually increase with adding each proposed component, validating effectiveness of each components.

	Dataset Source Model			LFW				
Methods				Offline Model		Online Model		
	IR152	FaceNet	IRSE50	IR50	ResNet101	Face++	Microsoft	
Single Model	~	-	-	76.50	79.30	43.40	13.10	
	-	\checkmark	-	1.30	5.10	4.90	0.20	
	-	2	\checkmark	63.40	76.80	56.50	14.20	
Ensemble	~	~	-	75.80	78.20	46.70	19.10	
	1	-	\checkmark	89.30	89.70	60.40	36.50	
	7	\checkmark	\checkmark	65.80	77.90	59.20	16.80	
Ours	Basic framework			80.90	92.20	69.80	37.20	
	+ Hard P.S.		97.60	96.80	77.40	45.40		
	+ JTMO		98.30	98.40	95.50	51.20		
		+ CTGS		98.70	98.60	96.10	59.30	

Sibling-Attack could generate visuallyindistinguishable adversarial examples competitive to mainstream methods.

Dataset		LFW					
Source Model	IR152-	+FaceNet	IR152+IRSE50				
Metrics	SSIM	MSE	SSIM	MSE			
PGD [45]	0.619	175.915	0.594	193.801			
TAP [75]	0.613	181.279	0.591	196.942			
MI-FGSM [17]	0.473	343.227	0.463	350.162			
VMI-FGSM [62]	0.588	200.418	0.574	215.346			
Sibling-Attack	0.626	187.491	0.626	187.491			

*Hard P.S.: hard parameter sharing; JTMO: Joint Task Meta Optimization; CTGS: Cross Task Gradient Stabilization.

Discussion & Conclusion

- ➢ Go beyond face recognition: boost transferability of attacking other tasks.
- Adversarial attack for good: improve model robustness.
- Attack success rate of Sibling-Attack significantly outperforms current SOTA single-task attacks particularly on several online commercial FR systems by a large margin.
- Related Links:

Homepage

