Sibling-Attack: Rethinking Transferable Adversarial Attacks Against Face Recognition

Zexin Li ${ }^{1}$, Bangjie Yin ${ }^{3}$, Taiping Yao 3, Junfeng Guo ${ }^{2}$, Shouhong Ding ${ }^{3}$, Simin Chen ${ }^{2}$, and Cong Liu ${ }^{1}$ ${ }^{1}$ University of California, Riverside, ${ }^{2}$ The University of Texas at Dallas, ${ }^{3}$ Youtu Lab, Tencent

Poster ID: THU-PM-385

Introduction

> Transferable adversarial attack against face recognition (FR) task.
$>$ Leverage adversarial information from multiple tasks.
(a) Previous Attacks

(b) Sibling Attack

Auxiliary Task Selection

> Theoretical analysis conducted in previous works supports FR and AR are highly correlated tasks.
Empirical analysis demonstrates that AR exhibits best attacking transferability performance for intuitive multi-task attack.

Dataset	CelebA-HQ		LFW	
Target Model	IR50	ResNet101	IR50	ResNet101
FR+FR	73.40	76.00	75.80	78.20
FR+FLD	75.20	78.10	52.00	78.60
FR+FP	66.50	85.10	71.80	83.40
FR+AR(Ours)	$\mathbf{9 3 . 0 0}$	$\mathbf{9 3 . 4 0}$	$\mathbf{9 7 . 6 0}$	$\mathbf{9 6 . 8 0}$

Optimization Framework

> Joint Task Meta Optimization (JTMO)
> Cross Task Gradient Stabilization (CTGS)

Quantitative Results

Sibling-Attack improves the attack success rate by $\mathbf{1 2 . 6 1 \%}$ and $\mathbf{5 5 . 7 7 \%}$ on average on pre-trained face recognition models and commercial face recognition systems.

Methods	Dataset	LFW							
	Source Model	IR152+FaceNet				IR152+IRSE50			
	Target Model	Offline Model		Online Model		Offline Model		Online Model	
		IR50	ResNet101	Face++	Microsoft	IR50	ResNet101	Face++	Microsoft
Face-based	Adv-Hat [37]	1.80	9.30	1.80	0.10	5.00	13.40	2.20	0.10
	Adv-Glasses [57]	0.80	5.00	3.70	0.00	1.90	4.90	4.70	0.00
	Adv-Face [13]	13.80	29.70	30.70	0.40	13.80	24.80	19.00	0.40
	Adv-Makeup [69]	2.40	9.20	5.30	0.20	4.70	12.60	5.50	0.30
	GenAP [66]	4.20	13.60	15.20	0.30	4.30	14.50	13.90	0.50
Transfer-based	PGD [45]	75.80	78.20	46.70	19.10	89.30	89.70	60.40	36.50
	TAP [75]	76.90	81.00	54.10	28.60	89.60	89.60	64.30	45.60
	MI-FGSM [17]	68.40	71.00	41.90	21.10	92.20	86.30	60.10	38.80
	VMI-FGSM [62]	76.80	80.80	41.50	10.90	76.40	79.30	40.80	11.90
Ours	Sibling-Attack	98.70	98.60	96.10	59.30	98.70	98.60	96.10	59.30
		$21.80 \uparrow$	$17.60 \uparrow$	$42.00 \uparrow$	$30.70 \uparrow$	$6.50 \uparrow$	$8.90 \uparrow$	$31.80 \uparrow$	$13.70 \uparrow$

Qualitative Results

> Gradient responses from Sibling-Attack and the target mode (FR-W) both focus more on the similar key facial regions, interprets the stronger transferability.

Ablation Study \& Analysis

> Attack success rate gradually increase with adding each proposed component, validating effectiveness of each components.

Methods	DatasetSource Model			LFW			
				Offline Model		Online Model	
	IR152	FaceNet	IRSE50	IR50	ResNet101	Face++	Microsoft
Single Model	\checkmark	-	-	76.50	79.30	43.40	13.10
	-	\checkmark	-	1.30	5.10	4.90	0.20
	-	-	\checkmark	63.40	76.80	56.50	14.20
Ensemble	\checkmark	\checkmark	-	75.80	78.20	46.70	19.10
	\checkmark	-	\checkmark	89.30	89.70	60.40	36.50
	-	\checkmark	\checkmark	65.80	77.90	59.20	16.80
Ours	Basic framework			80.90	92.20	69.80	37.20
	+ Hard P.S.			97.60	96.80	77.40	45.40
	+ JTMO			98.30	98.40	95.50	51.20
	+ CTGS			98.70	98.60	96.10	59.30

Sibling-Attack could generate visuallyindistinguishable adversarial examples competitive to mainstream methods.

Dataset	LFW			
Source Model	IR152+FaceNet	IR152+IRSE50		
Metrics	SSIM	MSE	SSIM	MSE
PGD [45]	0.619	$\mathbf{1 7 5 . 9 1 5}$	0.594	193.801
TAP [75]	0.613	181.279	0.591	196.942
MI-FGSM [17]	0.473	343.227	0.463	350.162
VMI-FGSM [62]	0.588	200.418	0.574	215.346
Sibling-Attack	$\mathbf{0 . 6 2 6}$	187.491	$\mathbf{0 . 6 2 6}$	$\mathbf{1 8 7 . 4 9 1}$

Discussion \& Conclusion

> Go beyond face recognition: boost transferability of attacking other tasks.
> Adversarial attack for good: improve model robustness.
> Attack success rate of Sibling-Attack significantly outperforms current SOTA single-task attacks particularly on several online commercial FR systems by a large margin.
> Related Links:

