

Semi-DETR: Semi-Supervised Object Detection with Detection Transformers

Jiacheng Zhang*, Xiangru Lin*, Wei Zhang, Kuo Wang, Xiao Tan, Junyu Han, Errui Ding, Jingdong Wang, Guanbin Li

Poster: THU-PM-306

Sun Yat-Sen University Baidu Inc

Semi-DETR Overview

- Semi-DETR is the first semi-supervised object detection method tailored for detection transformers.
- Semi-DETR can be used with various DETR-based detectors, e.g. Deformable DETR, DINO, etc.
- Semi-DETR achieves SOTA on both COCO and PASCAL VOC dataset.

Semi-Supervised Object Detection(SSOD)

- Background
 - Problem definition

Settings:

- 1. labeled data is limited: Taking **10% coco** as labeled data, and **the rest** as unlabeled data;
- labeled data is abundant: Taking full coco (118k images) as labeled data, and unlabeled2017 (123k images) as unlabeled data;

Semi-supervised Learning

Semi-Supervised Object Detection(SSOD)

- Background
 - Current Works

Soft-Teacher(Two-Stage Detector), Dense-Teacher(One-Stage Detector) ...

Problem: Anchor generation, Label assignment by various rules, NMS ...

[Xu 2021] End-to-End Semi-Supervised Object Detection with Soft Teacher ICCV2021 [Zhou 2022] Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection ECCV2022 [Nicolas 2020] End-to-End Object Detection with Transformers ECCV2020

- Motivation
 - Bipartite matching make NMS-free but cause training inefficiency.
 - Set-to-Set Prediction cause consistency regularization infeasible.

• Method

- Cross-view query consistency(CQC)
 - How to find the correspondence for proposal features?
 - Bipartite matching? × Time consuming when query num N is large(e.g. 300)
 - Semantic prior? \checkmark Enforce the decoder to learning the semantic invariance

• Main Results

Category	Method	ID	1%	5%	10%
	Unbiased Teacher	1	20.75 ± 0.12	28.27 ± 0.11	31.50 ± 0.10
Two-Stage	Soft-Teacher	2	20.46 ± 0.39	30.74 ± 0.08	34.04 ± 0.14
	PseCo	3	22.43 ± 0.36	32.50 ± 0.08	36.06 ± 0.24
	DSL	4	22.03 ± 0.28	30.87 ± 0.24	36.22 ± 0.18
One-Stage	Dense Teacher	5	22.38 ± 0.31	33.01 ± 0.14	37.13 ± 0.12
	Unbiased Teacher v2	6	22.71 ± 0.42	30.08 ± 0.04	32.61 ± 0.03
	Omi-DETR(Def-DETR)	7	18.60	30.20	34.10
	Def-DETR(Sup only)	8	11.00 ± 0.24	23.70 ± 0.13	29.20 ± 0.11
	Def-DETR SSOD(Baseline)	9	19.40 ± 0.31	31.10 ± 0.21	34.80 ± 0.09
	Semi-DETR(Def-DETR)	10	25.20 ± 0.23	34.50 ± 0.18	38.10 ± 0.14
End-to-End	DINO(Sup only)	11	18.00 ± 0.21	29.50 ± 0.16	35.00 ± 0.12
	DINO SSOD (Baseline)	12	28.40 ± 0.21	38.00 ± 0.13	41.60 ± 0.11
	Omi-DETR(DINO)	13	27.60	37.70	41.30
	Semi-DETR(DINO)	14	30.50 ± 0.30	40.10 ± 0.15	43.50 ± 0.10

COCO Partial

Method	100%
Unbiased Teacher	$40.2 \xrightarrow{+1.1} 41.3$
Soft-Teacher	$40.9 \stackrel{+3.6}{\longrightarrow} 44.5$
PseCo	$41.0 \xrightarrow{+5.1} 46.1$
DSL	$40.2 \xrightarrow{+3.6} 43.8$
Dense Teacher	$41.2 \xrightarrow{+3.6} 46.1$
Semi-DETR(Def-DETR)	$\textbf{43.6} \overset{+3.6}{\longrightarrow} \textbf{47.2}$
Semi-DETR(DINO)	$\textbf{48.6} \overset{+1.8}{\longrightarrow} \textbf{50.4}$

COCO Full

Category	Method	AP_{50}	$AP_{50:95}$
	Unbiased Teacher	77.37	48.69
Two-Stage	o-Stage Soft-Teacher		-
PseCo		-	-
	DSL	80.70	56.80
One-Stage	Dense Teacher	79.89	55.87
	Unbiased Teacher v2	81.29	56.87
	Def-DETR(Sup only)	74.50	46.20
	Def-DETR SSOD(Baseline)	78.90	53.40
	Semi-DETR(Def-DETR)	83.50	57.20
	DINO(sup only)	81.20	59.60
End-to-End	DINO SSOD (Baseline)	84.30	62.20
Semi-DETR(DINO)		86.10	65.20

PASCAL VOC

Ablation Study

Table 4. Component effectiveness of Semi-DETR. SHM denotes the Stage-wise Hybrid Matching, CQC means Cross-view Query Consistency, and CPM represents Cost-based Pseudo Label Mining, respectively.

ID	SHM	CQC	CPM	mAP	AP_{50}	AP_{75}
1				41.6	58.3	45.1
2	 ✓ 			42.7	59.3	46.2
3	 ✓ 	\checkmark		43.1	59.6	46.6
_ 4	\checkmark	\checkmark	\checkmark	43.5	59.7	46.8

Table 5.	Effects	of di	fferent	methods	to	filter	pseudo	labels	for
cross-viev	w consis	tency	trainin	ıg.					

Method	mAP	Precision	Recall
Fixed(0.4)	42.8	81.5%	41.3%
Top-K(K=9)	42.9	80.2%	39.4%
Mean + Std	43.1	60.2%	54.0%
Cost-based GMM	43.5	77.6%	52.1%

The effect of different pseudo boxes used in crossview query consistency. Table 7. Effects of the training iteration T_1 of the first stage using one-to-many assignment strategy in Stage-wise Hybrid Matching.

T_1	40k	60k	80k	100k	120k
mAP	42.9	43.5	43.2	43.0	44.0
NMS-Free	Y	Y	Y	Y	Ν

Semi-DETR can achieve better performance and retain the NMS-Free

Table 3. Experiments about usage extension of the pseudo labels from Cost-baed Pseudo Label mining(CPM). Cls means classification training and Reg means regression training. Consistency represents the cross-view query consistency.

Method	Cls + Reg	Consistency	mAP
CPM(Ours)		\checkmark	43.5
CPM(Extension)	\checkmark	\checkmark	42.4

The pseudo labels are the boxes covering the semantic areas, but not the one localized precisely.

Visualization

First column: supervised baseline; Second column: ours

Conclusion

- We present Semi-DETR, the first semi-supervised object detection method tailor designed for detection transformers.
- Semi-DETR analyze and solve the main obstacles which hinder the performance improvement for the SSOD with detection transformers.
- Semi-DETR can be applied with various detection transformers, for example Deformable DETR, DINO, etc. and achieves the new state-of-the-art performance on both COCO and PASCAL VOC dataset.

