WED-PM-118 Paper ID 722

SHS-Net: Learning Signed Hyper Surfaces for Oriented Normal Estimation of Point Clouds

Qing Li¹, Huifang Feng², Kanle Shi³, Yue Gao¹, Yi Fang⁴, Yu-Shen Liu¹, Zhizhong Han⁵

School of Software, BNRist, Tsinghua University, Beijing, China
School of Informatics, Xiamen University, Xiamen, China
Kuaishou Technology, Beijing, China
Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, UAE
Department of Computer Science, Wayne State University, Detroit, USA

0 Introduction

- We propose SHS-Net to estimate oriented normals directly from point clouds.
- In contrast, previous works usually implement this process through a two-stage paradigm using different algorithms, i.e., (1) unoriented normal estimation (e.g., PCA, AdaFit and HSurf-Net) and (2) normal orientation (e.g., MST, QPBO and ODP).

1. Method

Learning Signed Hyper Surface

$$f_{\boldsymbol{S}}(q) = f_{\boldsymbol{p}}^{\mathbf{n}}(q) \cdot f_{\boldsymbol{P}}^{s}(q) = \mathcal{E}_{\theta}^{\mathbf{n},s}(q|z_{q}^{\mathbf{n}}, z_{q}^{s})$$

 \mathcal{F} is formulated as:

$$\dot{z}_i = \mathcal{A}\left(\mathcal{B}\left(\mathrm{MAX}\left\{\mathcal{C}(w_j \cdot z_j)\right\}_{j=1}^{N_l}\right), z_i\right)$$

 \mathcal{A}, \mathcal{B} and \mathcal{C} are MLPs, w is a distance-based weight.

Attention-weighted Normal Prediction Module

 $(\dot{\mathbf{n}}_{q}, s) = \mathcal{O}\left(\mathcal{V}(o_{q}) \otimes \mathrm{MAX}\left\{\mathrm{softmax}_{\mathcal{N}_{q}}\left(\mathcal{Q}_{j}(o_{q})_{j=1}^{m}\right)\right\}\right)$ $o_{q} = \tau \cdot \underline{z_{q}}, \quad \tau = \mathrm{sigmoid}(\mathcal{I}(z_{q}))$

 $\mathcal{O}, \mathcal{V}, \mathcal{Q} \text{ and } \mathcal{I} \text{ are MLPs.}$

• Sin loss:
$$\mathcal{L}_{sin} = \|\mathbf{n}_q \times \hat{\mathbf{n}}_q\|$$

• MSE loss:
$$\mathcal{L}_{mse} = \frac{1}{N} \sum_{i=1}^{N} \tau_i \| \vec{\mathbf{n}}_i - \hat{\vec{\mathbf{n}}}_i \|^2$$

• Sign loss:
$$\mathcal{L}_{sgn} = H\left(\sigma(g^s(q)), [f_s(q) > 0]\right)$$

• Weight loss:
$$\mathcal{L}_{\tau} = \frac{1}{N} \sum_{i=1}^{N} (\tau_i - \hat{\tau}_i)^2, \quad \hat{\tau}_i = \exp\left(-\frac{(p_i \cdot \hat{\mathbf{n}}_q)^2}{\xi^2}\right)$$

• Final loss: $\mathcal{L} = \lambda_1 \mathcal{L}_{sin} + \lambda_2 \mathcal{L}_{sgn} + \lambda_3 \mathcal{L}_{mse} + \lambda_4 \mathcal{L}_{\tau}$

$$\lambda_1 = 0.1, \ \lambda_2 = 0.1, \ \lambda_3 = 0.5 \ \text{and} \ \lambda_4 = 1.0$$

2. Experiments

2 FamousShape Dataset

We follow the same preprocessing steps as the PCPNet dataset to conduct data augmentation, *e.g.*, adding Gaussian noise with different levels (0.12%, 0.6% and 1.2%) and uneven sampling (stripe and gradient). **This dataset is publicly available online.**

2 Oriented Normal Evaluation

		PCPNet Dataset								FamousShape Dataset						
	Category		Noise			Density		Average	Noise				Density		Average	
		None	0.12%	0.6%	1.2%	Stripe	Gradient	riterage	None	0.12%	0.6%	1.2%	Stripe	Gradient	interage	
	PCA [19]+MST [19]	19.05	30.20	31.76	39.64	27.11	23.38	28.52	35.88	41.67	38.09	60.16	31.69	35.40	40.48	
DMCE of oriented normal	PCA [19]+QPBO [45]	18.55	21.61	30.94	39.54	23.00	25.46	26.52	32.25	39.39	41.80	61.91	36.69	35.82	41.31	
RIVISE of oriented normal	PCA [19]+ODP [38]	28.96	25.86	34.91	51.52	28.70	23.00	32.16	30.47	31.29	41.65	84.00	39.41	30.72	42.92	
on datasets PCPNet and	AdaFit [59]+MST [19]	27.67	43.69	48.83	54.39	36.18	40.46	41.87	43.12	39.33	62.28	60.27	45.57	42.00	48.76	
	AdaFit [59]+QPBO [45]	26.41	24.17	40.31	48.76	27.74	31.56	33.16	27.55	37.60	69.56	62.77	27.86	29.19	42.42	
FamousSnape.	AdaFit [59]+ODP [38]	26.37	24.86	35.44	51.88	26.45	20.57	30.93	41.75	39.19	44.31	72.91	45.09	42.37	47.60	
	HSurf-Net [32]+MST [19]	29.82	44.49	50.47	55.47	40.54	43.15	43.99	54.02	42.67	68.37	65.91	52.52	53.96	56.24	
	HSurf-Net [32]+QPBO [45]	30.34	32.34	44.08	51.71	33.46	40.49	38.74	41.62	41.06	67.41	62.04	45.59	43.83	50.26	
	HSurf-Net [32]+ODP [38]	26.91	24.85	35.87	51.75	26.91	20.16	31.07	43.77	43.74	46.91	72.70	45.09	43.98	49.37	
	PCPNet [17]	33.34	34.22	40.54	44.46	37.95	35.44	37.66	40.51	41.09	46.67	54.36	40.54	44.26	44.57	
	DPGO* [50]	23.79	25.19	35.66	43.89	28.99	29.33	31.14	-	-	-	-	-	-	-	
	Ours	10.28	13.23	25.40	35.51	16.40	17.92	19.79	21.63	25.96	41.14	52.67	26.39	28.97	32.79	

PGP curves of oriented normal on the PCPNet dataset.

2 Unoriented Normal Evaluation

		PCPNet Dataset								FamousShape Dataset						
	Category	Noise				De	ensity	Augraga		No	ise		Density		Average	
		None	0.12%	0.6%	1.2%	Stripe	Gradient	Average	None	0.12%	0.6%	1.2%	Stripe	Gradient	Average	
	Jet [10]	12.35	12.84	18.33	27.68	13.39	13.13	16.29	20.11	20.57	31.34	45.19	18.82	18.69	25.79	
	PCA [19]	12.29	12.87	18.38	27.52	13.66	12.81	16.25	19.90	20.60	31.33	45.00	19.84	18.54	25.87	
RMSE of unoriented normal	PCPNet [17]	9.64	11.51	18.27	22.84	11.73	13.46	14.58	18.47	21.07	32.60	39.93	18.14	19.50	24.95	
on detects DCDNat and	Zhou et al. * [57]	8.67	10.49	17.62	24.14	10.29	10.66	13.62	-	-	-	-	-	-	-	
on datasets PCPINEL and	Nesti-Net [6]	7.06	10.24	17.77	22.31	8.64	8.95	12.49	11.60	16.80	31.61	39.22	12.33	11.77	20.55	
FamousShape.	Lenssen et al. [29]	6.72	9.95	17.18	21.96	7.73	7.51	11.84	11.62	16.97	30.62	39.43	11.21	10.76	20.10	
	DeepFit [5]	6.51	9.21	16.73	23.12	7.92	7.31	11.80	11.21	16.39	29.84	39.95	11.84	10.54	19.96	
	MTRNet [*] [9]	6.43	9.69	17.08	22.23	8.39	6.89	11.78	-	-	-	-	-	-	-	
	Refine-Net [56]	5.92	9.04	16.52	22.19	7.70	7.20	11.43	-	-	-	-	-	-	-	
	Zhang <i>et al.</i> * [54]	5.65	9.19	16.78	22.93	6.68	6.29	11.25	9.83	16.13	29.81	39.81	9.72	9.19	19.08	
	Zhou et al. * [58]	5.90	9.10	16.50	22.08	6.79	6.40	11.13	-	-	-	-	-	-	-	
	AdaFit [59]	5.19	9.05	16.45	21.94	6.01	5.90	10.76	9.09	15.78	29.78	38.74	8.52	8.57	18.41	
	GraphFit [31]	5.21	8.96	16.12	21.71	6.30	5.86	10.69	8.91	15.73	29.37	38.67	9.10	8.62	18.40	
	HSurf-Net [32]	4.17	8.78	16.25	21.61	4.98	4.86	10.11	7.59	15.64	29.43	38.54	7.63	7.40	17.70	
	Ours	3.95	8.55	16.13	21.53	4.91	4.67	9.96	7.41	15.34	29.33	38.56	7.74	7.28	17.61	

PGP curves of unoriented normal on the PCPNet dataset.

	Ablation	Feat. Enco.	$\begin{array}{c} \text{Module} \\ \mathcal{H} \end{array}$	Loss	Point Samp.	None	No 0.12%	ise 0.6%	1.2%	De Stripe	ensity Gradient	Oriented Average	Unoriented Average
	w/o patch encoding		\checkmark	\checkmark	\checkmark	35.19	42.23	55.59	61.38	38.92	41.49	45.80	18.83
(a)	w/o shape encoding		\checkmark	\checkmark	\checkmark	69.72	64.37	81.87	77.07	74.84	90.35	76.37	14.94
	w/o weight w		\checkmark	\checkmark	\checkmark	11.15	14.32	26.49	36.03	17.99	26.03	22.00	10.48
(b)	w/o module ${\cal H}$	\checkmark		\checkmark	\checkmark	12.08	14.53	25.87	35.88	18.45	31.84	23.11	10.24
(c)	w/o $\mathcal{L}_{sin}, \mathcal{L}_{sgn}$	\checkmark	\checkmark		\checkmark	23.86	25.55	34.13	42.48	32.42	41.30	33.29	20.23
	w/o density gradient	\checkmark	\checkmark	\checkmark		12.10	18.25	28.05	38.15	19.79	28.09	24.07	10.00
	w/o random sample	\checkmark	\checkmark	\checkmark		11.01	13.79	25.64	35.86	17.22	25.71	21.54	9.94
(d)	$\zeta = 1/2$	\checkmark	\checkmark	\checkmark		10.99	14.04	25.66	35.78	17.73	37.82	23.67	9.92
(u)	$\zeta = 1/3$	\checkmark	\checkmark	\checkmark		13.27	15.42	26.82	37.16	17.52	28.11	23.05	9.95
	$N_{P} = 1100$	\checkmark	\checkmark	\checkmark		10.67	14.21	25.54	35.97	16.80	26.98	21.69	9.99
	$N_{P} = 1300$	\checkmark	\checkmark	\checkmark		12.44	14.53	25.93	35.79	18.40	19.85	21.16	9.98
	Final	\checkmark	\checkmark	\checkmark	\checkmark	10.28	13.23	25.40	35.51	16.40	17.92	19.79	9.96

Oriented normal RMSE of ablation studies on the PCPNet dataset.

- The last column is the average results under the unoriented normal metric.
- The ablation experiments include: (a) the feature encoding modules and the weight, (b) the attentionweighted normal prediction module, (c) sin loss and sign loss, (d) the point sampling strategies and other hyperparameters.

3. Demo and Application

3 Application: Point Cloud Denoising

- In summary, our contributions include:
 - (a) We introduce a new technique to represent point cloud geometric properties as signed hyper surfaces in a high-dimensional feature space.
 - (b) We show that the signed hyper surfaces can be used to estimate normals with consistent orientations directly from point clouds, rather than through a two-stage paradigm.
 - (c) We experimentally demonstrate that our method is able to estimate normals with high accuracy and achieves the state-of-the-art results in both unoriented and oriented normal estimation.

Thanks for your attention!

https://leoqli.github.io/SHS-Net/