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Introduction0
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• We propose SHS-Net to estimate oriented normals directly from point clouds. 

• In contrast, previous works usually implement this process through a two-stage paradigm using 

different algorithms, i.e., (1) unoriented normal estimation (e.g., PCA, AdaFit and HSurf-Net) and 

(2) normal orientation (e.g., MST, QPBO and ODP).



1. Method



Learning Signed Hyper Surface1
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Feature Encoding Module1
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Attention-weighted Normal Prediction Module1
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Loss Functions1
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• Sin loss:

• MSE loss:

• Sign loss:

• Weight loss:

• Final loss:



2. Experiments



FamousShape Dataset2
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We follow the same preprocessing steps as the PCPNet dataset to conduct data augmentation, e.g., adding 

Gaussian noise with different levels (0.12%, 0.6% and 1.2%) and uneven sampling (stripe and gradient). 

This dataset is publicly available online.



Oriented Normal Evaluation

10

PGP curves of oriented normal on the PCPNet dataset. 

RMSE of oriented normal

on datasets PCPNet and 

FamousShape.
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Unoriented Normal Evaluation2
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PGP curves of unoriented normal on the PCPNet dataset. 

RMSE of unoriented normal

on datasets PCPNet and 

FamousShape.
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Surface 

reconstruction 

using estimated 

normals on the 

KITTI dataset.

Visualization 

of the oriented 

normal error



Ablation Studies2
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Oriented normal RMSE of ablation studies on the PCPNet dataset. 

• The last column is the average results under the unoriented normal metric.

• The ablation experiments include: (a) the feature encoding modules and the weight, (b) the attention-

weighted normal prediction module, (c) sin loss and sign loss, (d) the point sampling strategies and 

other hyperparameters.



3. Demo and Application
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Application: Point Cloud Denoising3
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Surface Reconstruction

on the KITTI Dataset
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Summary4
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• In summary, our contributions include:

(a) We introduce a new technique to represent point cloud geometric 
properties as signed hyper surfaces in a high-dimensional feature 
space.

(b) We show that the signed hyper surfaces can be used to estimate 
normals with consistent orientations directly from point clouds, 
rather than through a two-stage paradigm.

(c) We experimentally demonstrate that our method is able to estimate 
normals with high accuracy and achieves the state-of-the-art results 
in both unoriented and oriented normal estimation.
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Thanks for your attention!

https://leoqli.github.io/SHS-Net/


