

Generative Bias for Robust Visual Question Answering

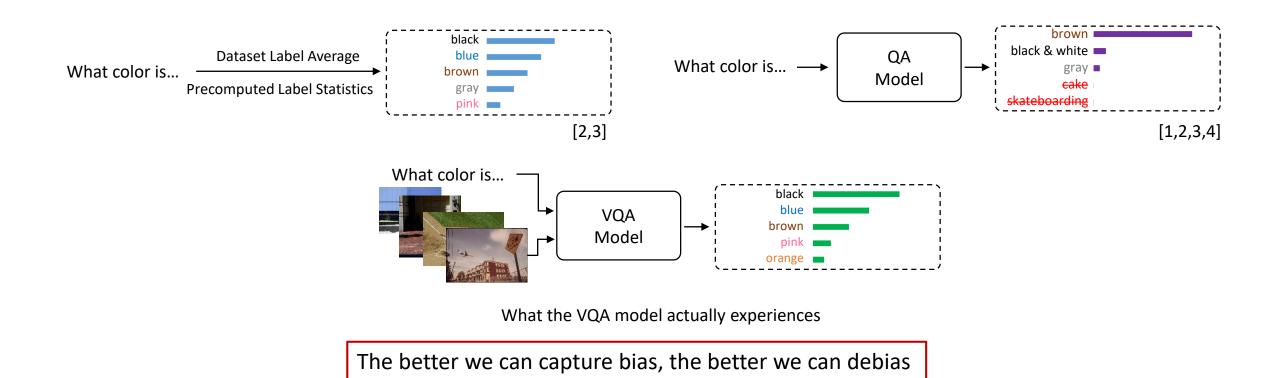
Jae Won Cho¹

Dong-Jin Kim²

Hyeonggon Ryu¹

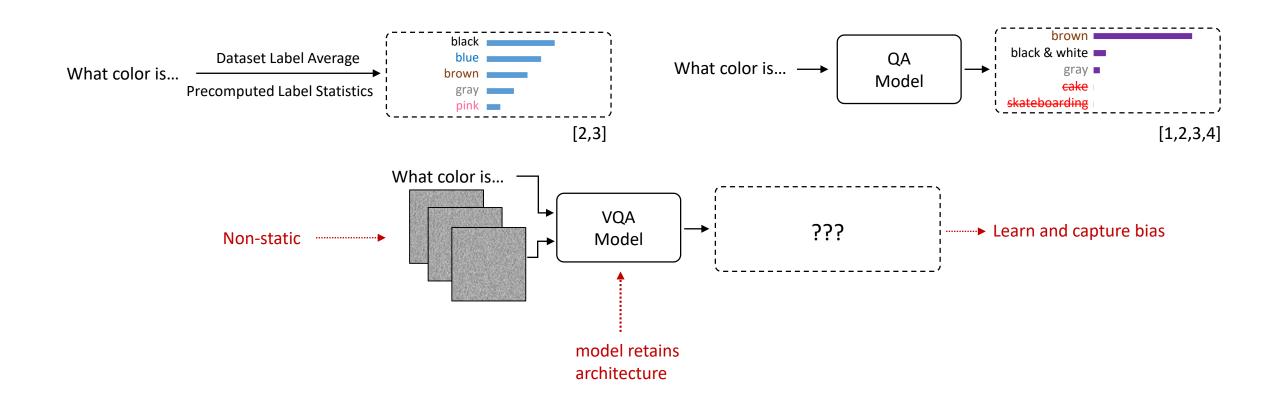
In So Kweon¹

¹KAIST, South Korea


²Hanyang University, South Korea

Overview

Issue of VQA Bias

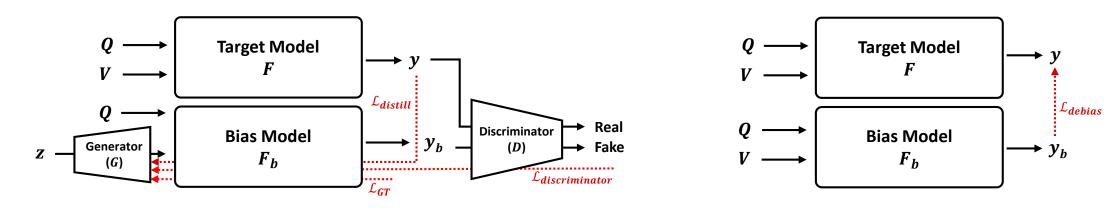

[1] Cadene R., RUBi: Reducing Unimodal Biases in Visual Question Answering. NeurIPS 2019.

[2] Clark C., Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. EMNLP 2019.

[3] Han X., Greedy Gradient Ensemble for Robust Visual Question Answering. ICCV 2021.

Overview

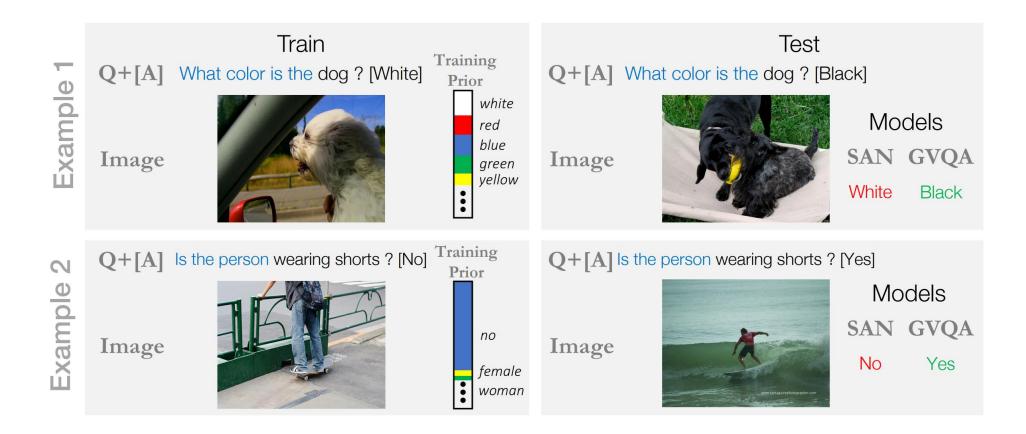
Generative Bias!

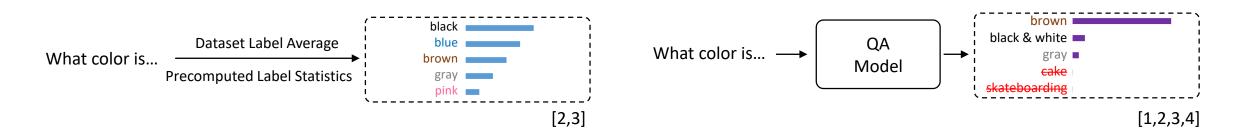

[1] Cadene R., RUBi: Reducing Unimodal Biases in Visual Question Answering. NeurIPS 2019.

[2] Clark C., Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. EMNLP 2019.

[3] Han X., Greedy Gradient Ensemble for Robust Visual Question Answering. ICCV 2021.

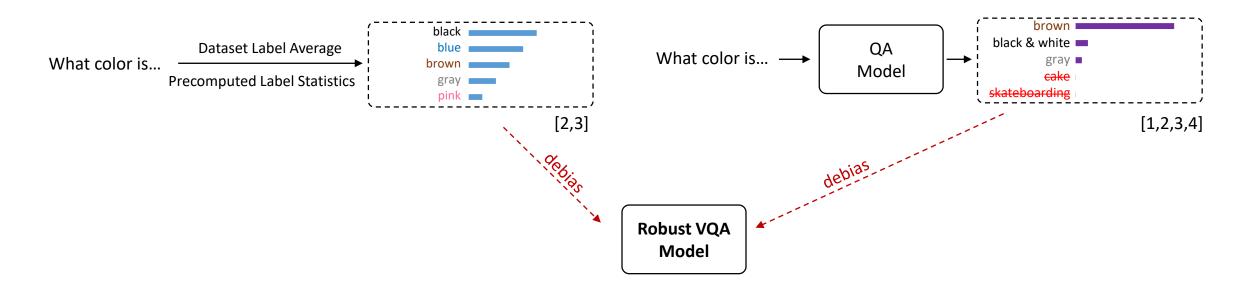
Overview


Generative Bias for Robust VQA


Full training of the bias model

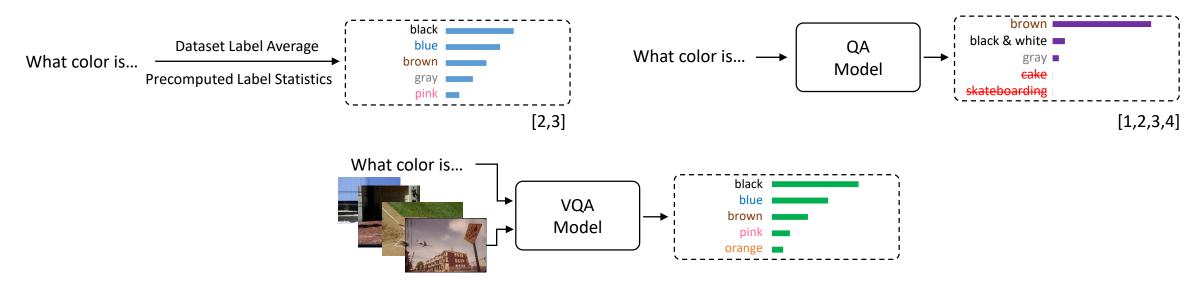
Bias Issue

VQA models rely heavily on language priors!



Two commonly used statistics for debiasing in VQA

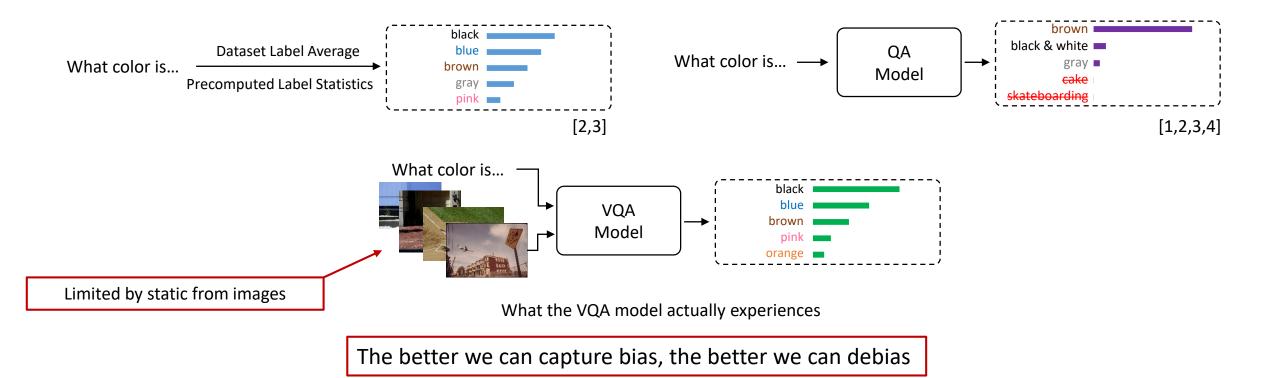
[1] Cadene R., RUBi: Reducing Unimodal Biases in Visual Question Answering. NeurIPS 2019.
[2] Clark C., Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. EMNLP 2019.
[3] Han X., Greedy Gradient Ensemble for Robust Visual Question Answering. ICCV 2021.
[4] Counterfactual VQA: A Cause-Effect Look at Language Bias. CVPR 2021.


Two commonly used statistics for debiasing in VQA

[1] Cadene R., RUBi: Reducing Unimodal Biases in Visual Question Answering. NeurIPS 2019.

[2] Clark C., Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. EMNLP 2019.

[3] Han X., Greedy Gradient Ensemble for Robust Visual Question Answering. ICCV 2021.

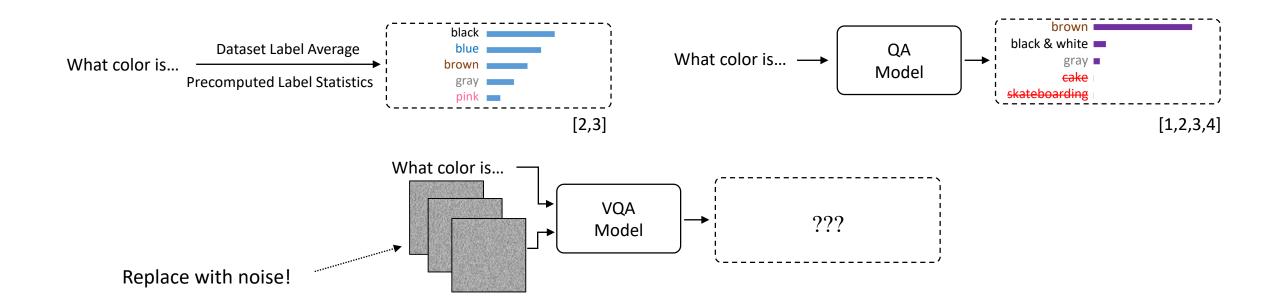


What the VQA model actually experiences

[1] Cadene R., RUBi: Reducing Unimodal Biases in Visual Question Answering. NeurIPS 2019.

[2] Clark C., Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. EMNLP 2019.

[3] Han X., Greedy Gradient Ensemble for Robust Visual Question Answering. ICCV 2021.

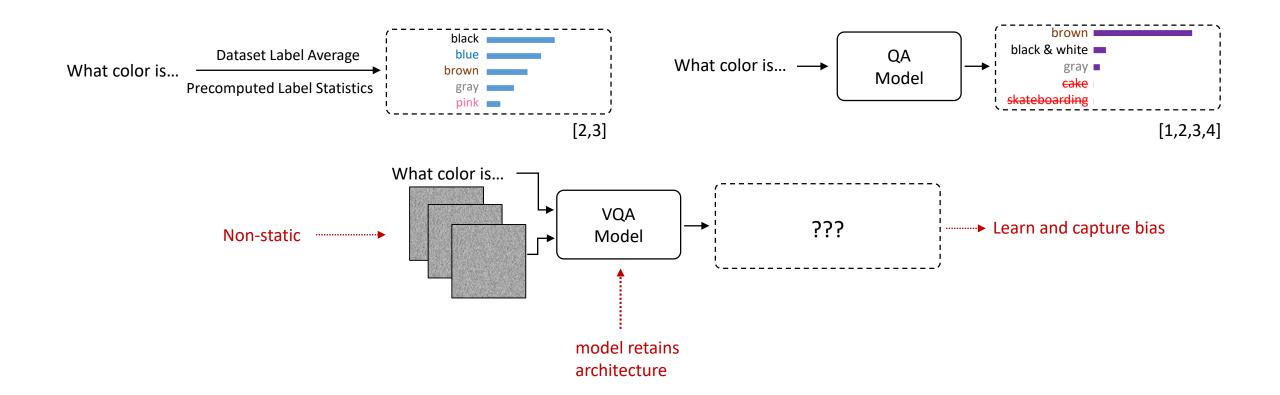


[1] Cadene R., RUBi: Reducing Unimodal Biases in Visual Question Answering. NeurIPS 2019.

[2] Clark C., Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. EMNLP 2019.

[3] Han X., Greedy Gradient Ensemble for Robust Visual Question Answering. ICCV 2021.

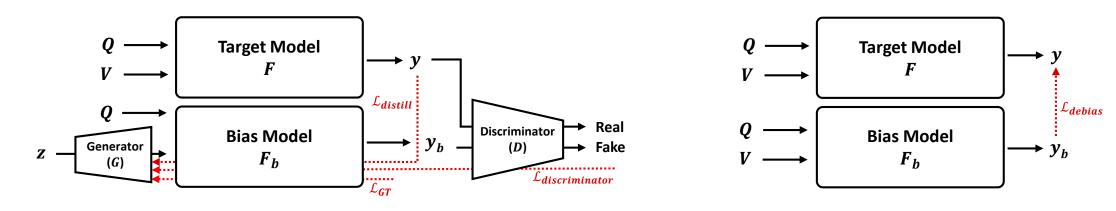
Generative Bias!



[1] Cadene R., RUBi: Reducing Unimodal Biases in Visual Question Answering. NeurIPS 2019.

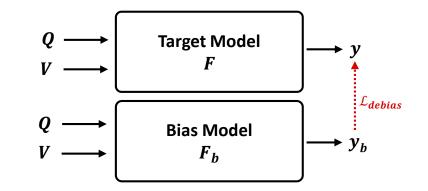
[2] Clark C., Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. EMNLP 2019.

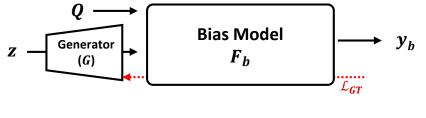
[3] Han X., Greedy Gradient Ensemble for Robust Visual Question Answering. ICCV 2021.


Generative Bias!

[1] Cadene R., RUBi: Reducing Unimodal Biases in Visual Question Answering. NeurIPS 2019.

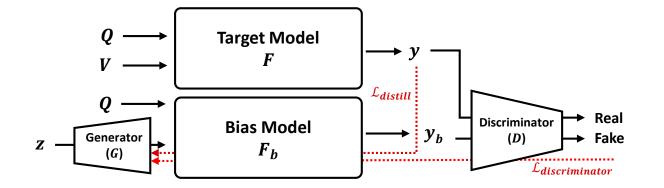
[2] Clark C., Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. EMNLP 2019.


[3] Han X., Greedy Gradient Ensemble for Robust Visual Question Answering. ICCV 2021.

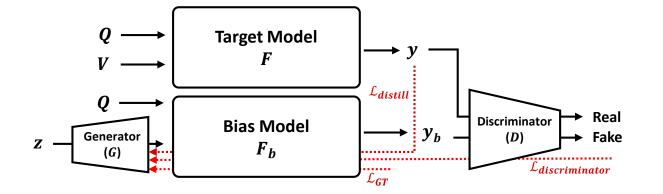

Full training of the bias model

Ensemble Training

Bias Model captures *bias* and Target Model learns to *debias* from it



Bias Model Training


Learns distribution Bias

Bias Model Training

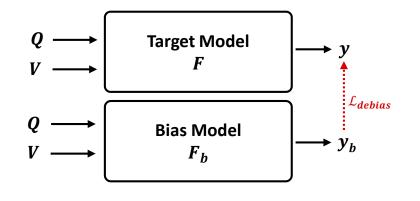
Learns the Target Model's bias

Bias Model Training

The bias model generates **stochastic bias representations**

Intuitively, Generator learns to "*hallucinates*" the "visual input"

Target model debiasing


Bias Model's output as negative gradient supervision

$$\mathcal{L}_{target}(F) = \mathcal{L}_{BCE}(\mathbf{y}, \mathbf{y}_{DL})$$

with,

$$\mathbf{y}_{DL}^{i} = \min\left(1, \ 2 \cdot \mathbf{y}_{gt}^{i} \cdot \sigma(-2 \cdot \mathbf{y}_{gt}^{i} \cdot \mathbf{y}_{b}^{i})\right)$$

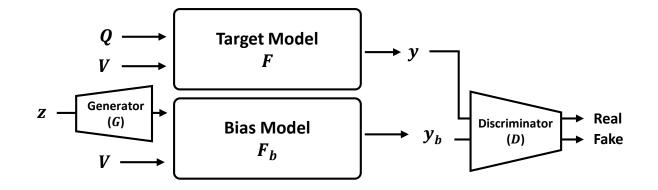
Using the raw unbounded output + clamping allows our loss to take into consideration the **intensity** of bias

Excellent performance

Method	Base	BaseV			VQA-CP2 test		VQA-CP1 test			
	Duse	All	Yes/No	Num	Other	All	Yes/No	Num	Other	
SAN [40]	-	24.96	38.35	11.14	21.74	32.50	36.86	12.47	36.22	
GVQA [3]	-	31.30	57.99	13.68	22.14	39.23	64.72	11.87	24.86	
S-MRL [7]	-	38.46	42.85	12.81	43.20	36.38	42.72	12.59	40.35	
UpDn [4]	-	39.94	42.46	11.93	45.09	36.38	42.72	42.14	40.35	
Methods based on modifying language	modules									
DLR [22]	UpDn	48.87	70.99	18.72	45.57	_	_	_	-	
VGQE [26]	UpDn	48.75	_	_	-	_	-	_	_	
VGQE [26]	S-MRL	50.11	66.35	27.08	46.77	-	_	_	-	
Methods based on strengthening visual	attention									
HINT [32]	UpDn	46.73	67.27	10.61	45.88	_	_	_	_	
SCR [38]	UpDn	49.45	72.36	10.93	48.02	-	-	-	-	
Methods based on ensemble models										
AReg [31]	UpDn	41.17	65.49	15.48	35.48	43.43	74.16	12.44	25.32	
RUBi [7]	UpDn	44.23	67.05	17.48	39.61	50.90	80.83	13.84	36.02	
LMH [12]	UpDn	52.45	69.81	<u>44.46</u>	45.54	55.27	76.47	26.66	45.68	
CF-VQA(SUM) [28]	UpDn	53.55	<u>91.15</u>	13.03	44.97	57.03	<u>89.02</u>	17.08	41.27	
CF-VQA(SUM) [28]	S-MRL	55.05	90.61	21.50	45.61	57.39	88.46	14.80	43.61	
CF-VQA(SUM) [28] + IntroD [29]	S-MRL	55.17	90.79	17.92	46.73	-	-	-	-	
GGE [18]	UpDn	57.32	87.04	27.75	<u>49.59</u>	_	_	_	-	
GenB (Ours)	UpDn	<u>59.15</u>	88.03	40.05	49.25	<u>62.74</u>	86.18	<u>43.85</u>	<u>47.03</u>	

Method		GQA-O	OD Test	
	All	Tail	Head	Avg
UpDn [4]	46.87	42.13	49.16	45.65
RUBi [7]	45.85	43.37	47.37	45.37
LMH [12]	43.96	40.73	45.93	43.33
CSS [9]	44.24	41.20	46.11	43.66
GenB (Ours)	49.43	45.63	51.76	48.70

Generative	Bias	works	with	other	debiasing	losses
------------	------	-------	------	-------	-----------	--------


Ensemble Debias Loss	Bias Model	VQA-CP2 test					
	Dias model	All	Yes/No	Num	Other		
-	UpDn	39.94	42.46	11.93	45.09		
GGE [18]	UpDn	47.40	64.45	13.96	47.64		
Our Loss	UpDn	52.47	88.20	30.09	40.38		
RUBi [7]	GenB	30.77	72.78	12.15	13.87		
LMH [12]	GenB	53.99	75.89	44.62	45.08		
GGE [18]	GenB	49.51	70.63	14.08	48.16		
Ours Loss	GenB	59.15	88.03	40.05	49.25		

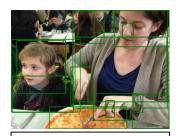
Architecture Agnostic

Architecture		VQA-C	P2 test		Δ Gap	
<i>included</i> and	All	Yes/No	Num	Other	<u> </u>	
UpDn [4] UpDn [4] + GenB	39.94 59.15	42.46 88.03	11.93 40.05	45.09 49.25	+19.21	
$BAN^{\dagger} [25]$ BAN [†] [25] + GenB	37.35 57.37	41.96 89.11	12.08 29.52	41.71 48.37	+20.02	
$\begin{array}{l} \text{SAN}^{\dagger} [40] \\ \text{SAN}^{\dagger} [40] + \text{GenB} \end{array}$	38.65 56.72	40.59 88.84	12.98 19.04	44.67 50.22	+18.07	
LXMERT [35] LXMERT [35] + GenB (Ours Best)	46.23 71.16	42.84 92.24	18.91 64.71	55.51 61.89	+24.93	
Reported LXMERT Performance						→ State-of-the-art!
LXMERT [35] + MUTANT [14] LXMERT [35] + D-VQA [37] LXMERT [35] + SAR [33]	69.52 69.75 62.12	93.15 80.43 85.14	67.17 58.57 41.63	57.78 67.23 55.68		

Generative Question Bias?

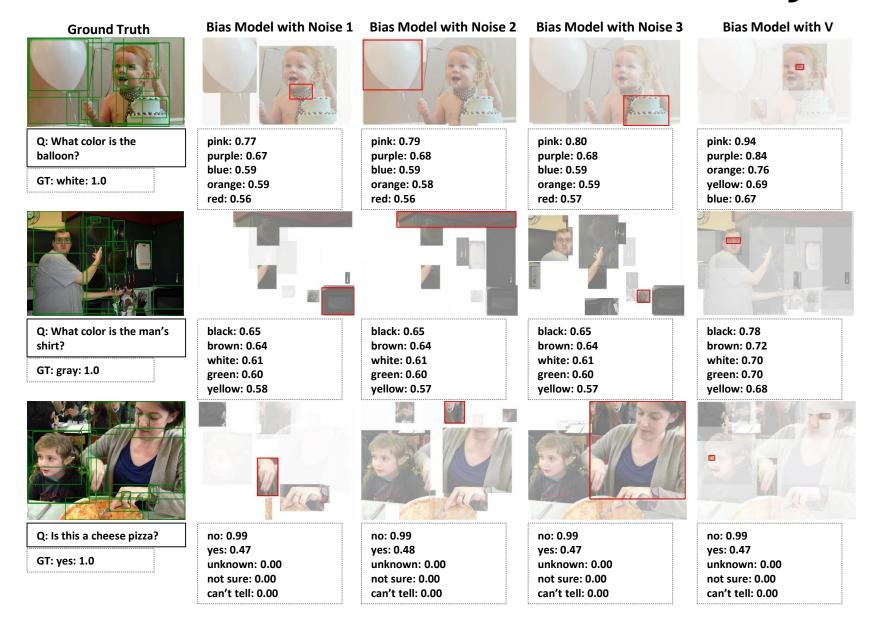
Bias Model	VQA-CP2 test						
	All	Yes/No	Num	Other			
UpDn	39.94	42.46	11.93	45.09			
UpDn	52.47	88.20	30.09	40.38			
Visual-Answer	41.03	42.69	12.66	47.93			
Question-Answer	56.68	89.30	20.78	49.43			
GenB Visual	49.54	72.05	12.58	47.89			
GenB Question (Ours)	59.15	88.03	40.05	49.25			

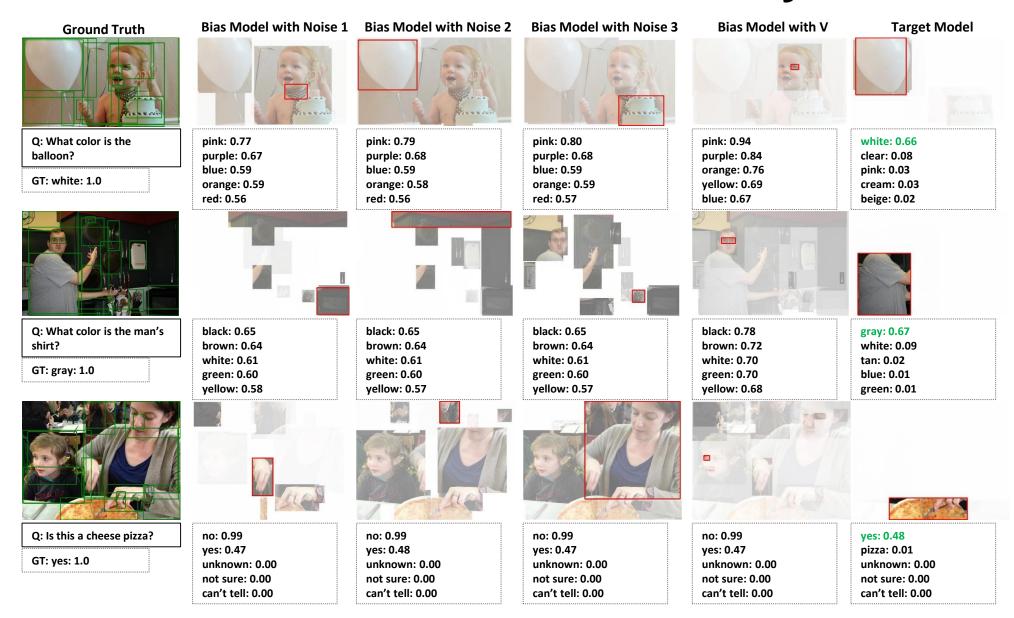
Ground Truth


Q: What color is the balloon?

GT: white: 1.0

Q: What color is the man's shirt?


GT: gray: 1.0



Q: Is this a cheese pizza?

GT: yes: 1.0

Thank You!

Github: <u>https://github.com/chojw/genb</u>