

Mask-Free Video Instance Segmentation

Lei Ke, Martin Danelljan, Henghui Ding, Yu-Wing Tai, Chi-Keung Tang, Fisher Yu

Paper Tag: THU-PM-215

(github.com/SysCV/MaskFreeVIS)

- We propose MaskFreeVIS, for high performance VIS without any mask annotations.
- We leverage the rich temporal consistency constraints by introducing the Temporal KNN-patch Loss.

Mask prediction of our MaskFreeVIS trained without using any masks annotation.

Enforce mask consistency between matches.

Temporal One-to-K Patch Correspondence

VIS Mask Prediction at Frame T

VIS Mask Prediction at Frame *T*+1

Blue: Unique one-to-one match.

Orange: Multiple matches in homogeneous regions.

White and Yellow: multiple matches on image edges.

Green: No match due to occlusion.

Video Instance Segmentation

Annotation Requirement for VIS methods

- Bounding boxes, object ids and instance masks per frame for all objects.
- Building a large-scale VIS/MOTS benchmark is very expensive.

Video frames

Video instance annotations

(a) Image source: Video Instance Segmentation. ICCV, 2019.

(b) Video source: OVIS

Video Instance Segmentation

Annotation Cost Analysis

- On COCO, it takes on average 79.2s per instance to create a coarse polygon-based object mask while box only takes 7s (11 times faster) ^[1]. Classification takes 0.9s.
- Video boxes annotation is significantly faster/cheaper than video masks.

Video frames

Video instance annotations (a) Image source: Video Instance Segmentation. ICCV, 2019.

[1] Pointly-Supervised Instance Segmentation. CVPR, 2022.

Can we train VIS models w/o Mask Labeling?

• **Goal**: Training a VIS model **without** using any video or even image masks, but still achieving high-performing results.

• **Insight**: Considering the object **bounding box** as the coarse object masks, and optimize them with temporal consistency.

- We propose MaskFreeVIS, for high performance VIS without any mask annotations.
- We leverage the rich temporal consistency constraints by introducing the Temporal KNN-patch Loss.

Mask prediction of our MaskFreeVIS trained without using any masks annotation.

• The core component TK-Loss:

Temporal One-to-K Patch Correspondence

VIS Mask Prediction at Frame T

VIS Mask Prediction at Frame *T*+1

- o 1) Mask consistency between **one-to-K** patch correspondences.
- o 2) No trainable parameters.
- \circ 3) TK-Loss replaces the conventional video masks losses.

• The core component TK-Loss:

Temporal One-to-K Patch Correspondence

VIS Mask Prediction at Frame *T*+1

Blue: Unique one-to-one match.

Orange: Multiple matches in homogeneous regions.

White and Yellow: multiple matches on image edges.

Green: No match due to occlusion.

VIS Mask Prediction at Frame T

- o 1) Mask consistency between **one-to-K** patch correspondences.
- 2) No trainable parameters.
- 3) TK-Loss replaces the conventional video masks losses.

• The core component TK-Loss:

Temporal One-to-K Patch Correspondence

VIS Mask Prediction at Frame *T*+1

Blue: Unique one-to-one match.

Orange: Multiple matches in homogeneous regions.

White and Yellow: multiple matches on image edges.

Green: No match due to occlusion.

VIS Mask Prediction at Frame T

- o 1) Mask consistency between **one-to-K** patch correspondences.
- 2) No trainable parameters.
- 3) TK-Loss replaces the conventional video masks losses.

• TK-Loss has four steps:

- 1) Patch Candidate Extraction: Patch candidates searching across frames with radius R.
- 2) **Temporal KNN-Matching**: Match **K** high-confidence candidates by patch affinities.
- 3) KNN-Consistency Loss: Enforce mask consistency objective among the matches.
- 4) Cyclic Tube Connection: Temporal loss aggregation in the 5-frame tube.

• TK-Loss has four steps:

- 1) Patch Candidate Extraction: Patch candidates searching across frames with radius R.
- 2) **Temporal KNN-Matching**: Match **K** high-confidence candidates by patch affinities.
- 3) KNN-Consistency Loss: Enforce mask consistency objective among the matches.
- 4) Cyclic Tube Connection: Temporal loss aggregation in the 5-frame tube.

Achieving **91.5**% (42.5 vs. 46.4) of its fully-supervised baseline performance on YTVIS.

Method	Video Mask	Image Mask	Pseudo Video	AP
SeqFormer (ECCV'22)	\checkmark	\checkmark	\checkmark	47.4
VMT (ECCV'22)	\checkmark	\checkmark	\checkmark	47.9
Mask2Former (CVPR'22)	\checkmark	\checkmark	\checkmark	47.8
MaskFreeVIS (ours)	×	\checkmark	\checkmark	46.6
Mask2Former (CVPR'22)	\checkmark	\checkmark	×	46.4
MaskFreeVIS (ours)	×	×	×	42.5

Comparison on YTVIS benchmark

MFVIS-1: w/o any mask usage.

MFVIS-2: using pre-trained COCO mask model as initialization. MFVIS-3: using COCO masks as pseudo video masks labels.

Results on with various percentages of the YTVIS training data.

Uniformly sample frames and their labels for each video.

- TK-Loss has four steps:
 - 1) Patch Candidate Extraction.
 - 2) Temporal KNN-Matching
 - 3) KNN-Consistency Loss.
 - 4) Cyclic Tube Connection.

lgorithm 1 Temporal KNN-patch Loss.				
uput: Tube length T , mask predictions T	\overline{M} , frame width			
W, height H , radius R , patch distance	threshold D .			
Putput: TK-Loss \mathcal{L}_{temp}				
1: $\# top K$ denotes selecting top K patch candidate	s with the maximum			
patch similarities computed using L_2 distance Di	$\mathtt{s}(\cdot, \cdot)$			
# L_{cons} denotes mask consistency loss (Equation 3 of the paper)				
3: $\mathcal{L}_{\text{temp}} \leftarrow 0.$				
4: for $t=1,\ldots,T$ do				
5: $\hat{t} \leftarrow (t+1)\%T$				
6: $\mathcal{L}_{f}^{t \to \hat{t}} \leftarrow 0.$				
7: $\vec{\mathbf{for}} \; j = 1, \dots, H imes W \; \mathbf{do}$				
8: # 1) Patch Candidate Extraction:				
9: $\mathcal{S}_{p_i}^{t \to \hat{t}} \leftarrow \{\hat{p}_i\}_i$, where $\ p_j - \hat{p}_i\ $	$\parallel \leq R$			
0: # 2) Temporal KNN-Matching:				
1: $\mathcal{S}_{p_{j}}^{t o t} \leftarrow \operatorname{top} K(\mathcal{S}_{p_{j}}^{t o t})$, where I	$ extsf{Dis}(p_j, \hat{p}_i) \leq D$			
2: # 3) Consistency Loss	^			
3: $\mathcal{L}_{f}^{t \to t} \leftarrow \mathcal{L}_{f}^{t \to t} + \sum_{\hat{p}_{i} \in \mathcal{S}_{r}^{t \to \hat{t}}} L_{c}$	$_{ t ons}(M_{p_{i}}^t,M_{\hat{p}_{i}}^t)$			
4: end for				
5: # 4) Cyclic Connection				
6: $\mathcal{L}_{\text{temp}} \leftarrow \mathcal{L}_{\text{temp}} + \mathcal{L}_{f}^{t \to \hat{t}} / (H \times W)$				
7: end for				

Qualitative VIS Results Comparison

This section includes qualitative comparisons between our MaskFreeVIS, Baseline and Oracle Mask2Former.

Oracle (Mask2Former + GT Video Masks Training)

Ours (MaskFreeVIS)

Oracle (Mask2Former + GT Video Masks Training)

Ours (MaskFreeVIS)

Oracle (Mask2Former + GT Video Masks Training)

Ours (MaskFreeVIS)

Oracle (Mask2Former + GT Video Masks Training)

Ours (MaskFreeVIS)

Oracle (Mask2Former + GT Video Masks Training)

Ours (MaskFreeVIS)

Oracle (Mask2Former + GT Video Masks Training)

Ours (MaskFreeVIS)

Baseline (Mask2Former + BoxInst)

Oracle (Mask2Former + GT Video Masks Training)

Ours (MaskFreeVIS)

OVIS Results of MaskFreeVIS

Results of MaskFreeVIS on the Web Videos

Video Result of MaskFreeVIS

- Contribution:
 - The first competitive VIS method that does not need any masks during training.
 - Greatly reducing the gap between fully-supervised and weakly-supervised VIS.
- Take away:
 - High-performing VIS can be learned even without any mask annotations.

(github.com/SysCV/MaskFreeVIS)