SketchXAI: A First Look at Explainability of Human Sketches

CVPR 2023: THU-PM-260

¹SketchX, CVSSP, University of Surrey

² Beijing University of Posts and Telecommunications

³ iFlyTek-Surrey Joint Research Centre

1 Minute Brief Introduction

Our proposal: Bicycle- Informed Stroke Inversion

Step 1: Randomise stroke locations first

Step 2: Invert via iterative optimisation

Background of Sketch Representation

Vector Image

RNN/Transformer/GNN

CNN

Explainability in CV

Image-based Explainable Methods

• Information of images is redundant and continuous, but information of sketches is refined and discrete.

Explainability in NLP

Text-based Explainable Methods

• Sketches's high information density is similar to that of text. But words are naturally familiar to human, while points are not.

Interpretable Components of Images, Text and Sketches

images \rightarrow pixels / super pixels / patches \rightarrow semantics

sketches \rightarrow pixels / points \rightarrow semantics

strokes

Sketch Surrey of Surrey of CVPR VANCOUVER CANADA

Stroke 4 **(**))

S₁

Stroke 1

Stroke 2

Stroke 3

())

Acc. (%)	Params (M)
78.76	24.2
68.71	8.5
80.51	64.7
77.90	86.6
78.71	87.8
78.34	13.1
81.51	26.7
84.81	32.7
85.30	51.7
31.04	
81.41	-
83.66	-
86.10	6.1
87.21	91.7
	Acc. (%) 78.76 68.71 80.51 77.90 78.71 78.34 81.51 84.81 85.30 31.04 81.41 83.66 86.10 87.21

Order Analysis

30

ViT

Ours

)

Shape Analysis

Shape Analysis

())

Primitives: Abstracting Sketches through Simple Primitives, ECCV 2022

Stroke Location Inversion

Recovery

set locations all randomly and the label to original category, see if our model can be recover the sketch.

Transfer

set the label to another category, see if our model can reorganise the strokes.

SLI -- Recovery

SLI -- Transfer

Beauty of Symmetry

General Training (performance)

 $\arg\min\ell\left(f_{w}\left(x_{i}\right),y_{i}\right)$

Use data to optimize a model

Q: "What label matches the sample?"

Model Inversion (explainability)

 $\arg\min_{x_{i}-part}\ell\left(f_{w}\left(x_{i}\right),y\right)$

Use a (trained) model to optimize data

Q: "What sample matches the label?"

•••

data.requires_grad = False
model.requires_grad = True

prediction = model(data)
loss = criterion(prediction, label)
loss.backward()

•••

data.requires_grad = True
model.requires_grad = False

prediction = model(data)
loss = criterion(prediction, label)
loss.backward()

Thank you! For more details, please visit: <u>https://sketchxai.github.io/</u>

SketchXAI: A First Look at Explainability of Human Sketches

CVPR 2023: THU-PM-260

