

OneFormer: One Transformer to Rule Universal Image Segmentation

Jitesh Jain^{1,2}, Jiachen Li^{1*}, MangTik Chiu^{1*}, Ali Hassani¹, Nikita Orlov³, Humphrey Shi^{1,3}

¹SHI Labs @ U of Oregon & UIUC, ²IIT Roorkee, ³Picsart AI Research

OneFormer: Preview

Multiple Tasks

- Single Set of Annotations
- ✓ Single Model

- Single Training Process
- **SOTA** Performance •

Introduction

Image Segmentation

- Image Segmentation is the task of **grouping pixels into multiple segments**.
- The grouping can be:
 - **Semantic:** One binary segment for **each category irrespective of shape** (*e.g. road, sky, etc.*).
 - Instance: Distinct segments for each object with well-defined shape (e.g. car, person, etc.).
 - **Panoptic:** An **amorphous segment for amorphous background regions** (labeled "stuff") and **distinct segments** for objects with well-defined shape (labeled "thing").

Jonathan Long *et al.*, Fully convolutional networks for semantic segmentation. CVPR 2015 Kaiming He *et al.*, Mask R-CNN. ICCV 2017 Alexander Kirillov *et al.*, Panoptic Segmentation. CVPR 2019

Goal

Develop a truly universal image segmentation framework that when trained **only once outperforms the individually trained models** on all three image segmentation tasks.

Methodology

OneFormer

- Multi-task Model
- Task-conditioned Architecture
- Outperforms existing frameworks across semantic, instance, and panoptic segmentation tasks, despite the latter need to be trained separately on each task using multiple times of the resources.

(b) Unified Task-Conditioned Query Formulation

(c) Task-Dynamic Mask and Class Prediction Formation

OneFormer v/s Mask2Former

Mask2Former

- VUniversal Architecture.
- X Multiple Tasks.
- X Single Set of Annotations.
- X Single Model.
- X Single Training Process.
- SOTA Performance.

1 architecture, 3 models & 3 datasets

OneFormer v/s Mask2Former

OneFormer

- VUniversal Architecture.
- **Multiple Tasks**.
- Single Set of Annotations.
- Single Model.
- Single Training Process.
- SOTA Performance.

1 architecture, 1 model & 1 dataset

Task-Guided Joint Training

- Uniformly sample task (probability *p*) for the GT label.
- Derive all GT labels from corresponding panoptic annotations during joint training.
- Condition our architecture on the task using a " the task is a **{task}**" input.
- The GT for a sample depends on the task domain.
 - We use a **query-text contrastive loss** for the model to learn inter-task distinctions.
- Text Mapper can be dropped during inference.

Input Text List Generation

(a) Task based GT Label

(b) Extract number of binary masks for each class (c) Form a list with text for each mask's class type

(d) Pad extracted Text to obtain a list of length $N_{\rm text}$

Results

Results: SOTA on major benchmark datasets

OneFormer sets a new state-of-the-art performance on all three segmentation tasks compared with methods using

the standard Swin-L backbone, and improves even more with new DiNAT backbone.

Ze Liu et al, Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021 Bowen Cheng *et al.*, Masked-attention mask transformer for universal image segmentation. CVPR 2022 Hassani *et al*, . Dilated Neighborhood Attention Transformer, arXiv 2022

Results: *Task-Dynamic OneFormer*

Task Token Input	PQ	$\mathbf{P}\mathbf{Q}^{\mathrm{Th}}$	PQ St	AP	mIoU
the task is panoptic	67.2	61.0	71.7	45.3	83.0
the task is instance	25.6	60.8	0.0	45.6	6.3
the task is semantic	56.9	36.2	71.9	27.2	83.0

Table V. Quantitative Analysis on Task Dynamic Nature of OneFormer. Our OneFormer is sensitive to the input task token value. We report results with Swin-L[†] OneFormer on the Cityscapes [14] val set. The numbers in pink denote results on secondary task metrics.

Task Token Input	PQ	$\mathbf{P}\mathbf{Q}^{\mathrm{Th}}$	PQ St	AP	mIoU
the task is panoptic	49.3	49.6	50.2	35.8	57.0
the task is instance	33.1	48.8	1.5	35.9	26.4
the task is semantic	40.4	35.5	50.2	25.3	57.0

Table 8. Ablation on Task Token Input. Our OneFormer is sensitive to the input task token value. We report results with Swin-L^{\dagger} OneFormer on the ADE20K [15] val set. The numbers in pink denote results on secondary task metrics.

Results: Individual Training

training strategy	method	PQ	AP	mIoU
Panoptic Training	Mask2Former [12] OneFormer (ours)	40.7 41.4 (+0.7)	25.2 27.0 (+1.8)	45.6 46.1 (+0.5)
Instance Training	Mask2Former [12] OneFormer (ours)	_	26.4 26.7 (+0.3)	_
Semantic Training	Mask2Former [12] OneFormer (ours)	_		47.2 47.3 (+0.1)
Joint Training	Mask2Former [†] [12] OneFormer (ours)	40.8 41.9 (+1.1)	25.7 27.3 (+1.6)	46.6 47.3 (+0.7)

Table IV. Comparison between Individual and Joint Training. Unlike Mask2Former [12] which shows large variance in performance among the different training strategies, OneFormer performs fairly well under all training strategies and outperforms Mask2Former [12]. We train all models with R50 [24] backbone on the ADE20K [15] dataset for 160k iterations. [†] We retrain our own Mask2Former [12] using the joint training strategy.

Conclusion

- Presented **OneFormer**, a new **multi-task universal image segmentation** framework with **task-guided queries**.
- Our **jointly trained single OneFormer model outperforms** the individually trained specialized Mask2Former models, the previous single-architecture state of the art, on all three segmentation tasks.
- OneFormer cuts training time, weight storage, and inference hosting requirements down to a third.
- Makes image segmentation more accessible.
- We believe OneFormer is a significant step towards making image segmentation more universal and accessible.

OneFormer: One Transformer to Rule Universal Image Segmentation

Jitesh Jain^{1,2}, Jiachen Li^{1*}, MangTik Chiu^{1*}, Ali Hassani¹, Nikita Orlov³, Humphrey Shi^{1,3}

¹SHI Labs @ U of Oregon & UIUC, ²IIT Roorkee, ³Picsart AI Research

Thank You

