GeneCIS: A Benchmark for General Conditional Image Similarity

Sagar Vaze

Nicolas Carion

Ishan Misra

Conditional Image Similarity

Humans understand many notions of 'similarity', and choose one for a given task However, most image representations are **<u>fixed</u>** We present a way to train and evaluate models which can adapt to different notions of similarity

With the same bridge

With a black car

The GeneCIS Benchmark

• Four conditional retrieval tasks for zero-shot evaluation

Method

• We automatically (scalably) mine training data from image-caption datasets

3. Construct triplets: (I^R, I^T, c)

Conditional Image Similarity Key Challenge: The set of possible conditions is infinite How do we train and evaluate such models?

Prior work focusses on

[1] Effectively Leveraging Attributes for Image Similarity, Mishra et. al, ICCV 2021 [2] Conditional Similarity Networks, Veit et al., CVPR 2017

Conditional Image Similarity

Solution: Evaluate zero-shot on an open-set of conditions Models which perform well on a range of conditions understand general conditional similarity

Consider

GeneCIS

- GeneCIS contains four conditional retrieval tasks for zero-shot evaluation
- Dataset is constructed from COCO and VAW (Visual Genome)
 - 2k samples per task and a long tail of conditions. Full details in the paper.

ieval tasks for zero-shot evaluation VAW (Visual Genome) f conditions. Full details in the paper.

GeneCIS: Change an Attribute

- Inputs: (i) Reference Image; (ii) Conditioning Text; (iii) Gallery of Target Images • **Outputs:** Best matching gallery image (**one correct answer**)
- **Distractors** in gallery prevent shortcut solutions

Same Object Wrong Attribute

Wrong Object **Condition Attribute**

Gallery of **Target Images**

Method

• **Key challenge:** Open-set of similarity conditions.

- Impossible to get exhaustively annotated training data
- Solution: Mine training data from image-caption datasets (Conceptual Captions 3M, CC3M)
 - Collect millions triplets of (Reference Image, Target Image, Condition)

Method

- We now have millions of training triplets (we mine 1.6M triplets)
- Embed images and text with CLIP-initialized encoders
- Condition reference image features on text condition with 'Combiner' module [1]
- Train contrastively

[1] Conditioned and Composed Image Retrieval Combining and Partially Fine-Tuning CLIP-Based Features, Baldrati et al., CVPRW 2022 https://openaiassets.blob.core.windows.net/\$web/clip/draft/20210104b/overview-a.svg

CLIP-Only Baselines

Training with manual supervision from CIRR [1]

Dataset of 30k triplets

[1] Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models, Liu et. al, ICCV 2021

Ours trained on 1.6M automatically curated triplets

Further Analysis

- Our model gets state-of-the-art on MIT-States, despite zero-shot evaluation

CIRR

	Zero-shot	Recall @ 1	Recall @ 5	Recall @ 10		Zero-shot	Recall @ 1	Recall @ 5	Recall @ 10
	Zero-snot	Recail e 1	Recall e 5	Recall & 10	TIRG [74]	x	12.2	31.9	43.1
ARTEMIS [17]	×	17.0	46.1	61.3	Compose A F [2]	×	13.0	35.3	47.9
CIRPLANT [45]	×	19.6	52.6	68.4	L DE [20]	ç	147	25.2	41.9
Combiner (CIRR, [4])	×	38.5	70.0	81.9	LDF [20]	0	14.7	33.3	40.0
Combiner (CIRR, improved)	×	40.9	73.4	84.8	HCL [79]	×	15.2	36.0	46.7
Image Only	1	7.5	23.9	34.7	MAN [20]	×	15.6	36.7	47.7
Text Only	1	20.7	43.9	56.1	Image Only	1	3.7	14.0	22.9
Image + Text	1	21.8	50.9	63.7	Text Only	1	11.2	21.7	11.2
Combiner (CC3M Ours)		27.3	57.0	71.1	Image + Text	1	12.8	31.4	42.5
comomer (ccowi, ours)	v	21.5	57.0	/1.1	Combiner (CC3M, Ours)	1	15.6	37.5	49.2

• Zero-shot evaluation of our model outperforms many supervised baselines on similar benchmarks

MIT-States

Further Analysis

- - In contrast to common vision tasks like detection and segmentation
- GeneCIS probes an **important** but **orthogonal** visual capability to most benchmarks

• GeneCIS performance is only weakly correlated with ImageNet accuracy of backbone

Thank you for listening

Email: sagar@robots.ox.ac.uk

Project page (+QR Link): https://sgvaze.github.io/genecis/

