PolyFormer: Referring Image Segmentation as Sequential Polygon Generation

Jiang Liu ${ }^{1 *+}$

Hui Ding2*

Zhaowei Cai ${ }^{2}$

Yuting Zhang ${ }^{2}$

Ravi Kumar Satzoda²

Vijay Mahadevan² R. Manmatha²
${ }^{1}$ Johns Hopkins University, ${ }^{2}$ AWS AI Labs, ${ }^{*}$ Equal Contribution, ${ }^{\dagger}$ Work done during internship at AWS AI Labs
https://polyformer.github.io/

PolyFormer Overview

- Unified framework for referring image segmentation and referring expression comprehension
- Regression-based decoder for accurate coordinate prediction
- Superior performance across all main referring image segmentation

Referring Image Segmentation

a cute corgi holding a sign
that says "AWS ROCKS"

Existing Work

- Mask-based dense prediction
- Neglect the structure among the output predictions
- Complex multi-modal feature fusion

Huang et al. "Referring Image Segmentation via Cross-Modal Progressive Comprehension." CVPR2020 aws

PolyFormer

- Sequence-to-sequence formulation

Model Architecture

Target Sequence Generation

- Polygon ordering
- Start from top-left
- Clockwise direction

Target Sequence Generation

- Multi-polygon case
- Separator token <SEP>

Target Sequence Generation

- Unified sequence with bounding box
- Bounding box: $\left(x_{1}^{b}, y_{1}^{b}\right),\left(x_{2}^{b}, y_{2}^{b}\right)$
- Final target sequence:

Regression-based Decoder

- Previous Seq2Seq framework: Coordinate prediction as a classification task
- Continuous coordinates => discrete bins
- quantization error
- Inaccurate supervision

OFA [Wang et al, ICML2022]

- PolyFormer: geometric localization as a regression task
- Directly predict floating-point coordinate
- No quantization error
- Accurate localization

$\left(x_{1}^{b}, y_{1}^{b}\right)=(0.5,34.8)$
$\left(x_{2}^{b}, y_{2}^{b}\right)=(369.0,333.0)$ $\left(x_{1}^{p_{1}}, y_{1}^{p_{1}}\right)=(192.7,58.1)$
"the second zebra from the front"

Regression-based Transformer Decoder

- 2D Coordinate Embedding

$$
\begin{aligned}
e_{(x, y)}= & (\bar{x}-x)(\bar{y}-y) \cdot e_{(\underline{x}, \underline{y})}+(x-\underline{x})(\bar{y}-y) \cdot e_{(\bar{x}, y)}+ \\
& (\bar{x}-x)(y-\underline{y}) \cdot e_{(\underline{x}, \bar{y})}+(x-\underline{x})(y-\underline{y}) \cdot e_{(\bar{x}, \bar{y})} .
\end{aligned}
$$

2D Coordinate $\quad \mathcal{D} \in \mathbb{R}^{B_{H} \times B_{W} \times C_{e}}$
Embedding Codebook

 aws

Regression-based Transformer Decoder

- Prediction Heads
- Coordinate head
- 3-layer feed-forward network (FFN)

$$
(\hat{x}, \hat{y})=\operatorname{Sigmoid}\left(F F N\left(Q^{N}\right)\right)
$$

- Class head
- Linear classification layer

$$
\hat{p}=W_{c} Q^{N}+b_{c},
$$

- Separator token <SEP>, coordinate token <COO>, end-of-sequence token <EOS>

Training: Polygon Augmentation

Two stage training

- Pre-train on REC task
- Visual Genome, RefCOCO, RefCOCO+, RefCOCOg datasets, and Flickr entities
- ~6M distinct language expressions and 164 k images in the training set.

Two stage training

- Pre-train on REC task
- Visual Genome, RefCOCO, RefCOCO+, RefCOCOg datasets, and Flickr entities
- ~6M distinct language expressions and 164k images in the training set.
- Finetuning on REC + RIS task on RefCOCO, RefCOCO+, RefCOCOg datasets

Referring image segmentation results

Method		Visual Backbone	Text Encoder	RefCOCO			RefCOCO+			RefCOCOg		
		val		test A	test B	val	test A	test B	val	test		
$\begin{aligned} & ? \\ & 0 \\ & 0 \end{aligned}$	STEP [7]		RN101	Bi-LSTM	60.04	63.46	57.97	48.19	52.33	40.41	-	-
	BRINet [29]	RN101	LSTM	60.98	62.99	59.21	48.17	52.32	42.11	-	-	
	CMPC [30]	RN101	LSTM	61.36	64.53	59.64	49.56	53.44	43.23	-	-	
	LSCM [31]	RN101	LSTM	61.47	64.99	59.55	49.34	53.12	43.50	-	-	
	CMPC+ [49]	RN101	LSTM	62.47	65.08	60.82	50.25	54.04	43.47	-	-	
	MCN [57]	DN53	Bi-GRU	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40	
	EFN [20]	WRN101	Bi-GRU	62.76	65.69	59.67	51.50	55.24	43.01	-	-	
	BUSNet [81]	RN101	Self-Att	63.27	66.41	61.39	51.76	56.87	44.13	-	-	
	CGAN [56]	DN53	Bi-GRU	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69	
	LTS [33]	DN53	Bi-GRU	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25	
	ReSTR [37]	ViT-B	Transformer	67.22	69.30	64.45	55.78	60.44	48.27	-	-	
	PolyFormer-B	Swin-B	BERT-base	74.82	76.64	71.06	67.64	72.89	59.33	67.76	69.05	
	PolyFormer-L	Swin-L	BERT-base	75.96	78.29	73.25	69.33	74.56	61.87	69.20	70.19	
$\begin{aligned} & \text { Q } \\ & \text { 壀 } \end{aligned}$	VLT [19]	DN53	Bi-GRU	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65	
	CRIS [76]	RN101	GPT-2	70.47	73.18	66.10	62.27	68.06	53.68	59.87	60.36	
	SeqTR [92]	DN53	Bi-GRU	71.70	73.31	69.82	63.04	66.73	58.97	64.69	65.74	
	RefTr [42]	RN101	BERT-base	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39	
	LAVT [84]	Swin-B	BERT-base	74.46	76.89	70.94	65.81	70.97	59.23	63.34	63.62	
	PolyFormer-B	Swin-B	BERT-base	75.96	77.09	73.22	70.65	74.51	64.64	69.36	69.88	
	PolyFormer-L	Swin-L	BERT-base	76.94	78.49	74.83	72.15	75.71	66.73	71.15	71.17	

PolyFormer-B
outperforms previous methods on each split of the three datasets

Table 1. Comparison with the state-of-the-art methods on three referring image segmentation benchmarks. RN101 denotes ResNetaws 101 [25], WRN101 refers to Wide ResNet-101 [88], and DN53 denotes Darknet-53 [65].

Referring image segmentation results

Method		Visual Backbone	Text Encoder	RefCOCO			RefCOCO+			RefCOCOg		
		val		test A	test B	val	test A	test B	val	test		
$\stackrel{\rightharpoonup}{\circ}$	STEP [7]		RN101	Bi-LSTM	60.04	63.46	57.97	48.19	52.33	40.41	-	-
	BRINet [29]	RN101	LSTM	60.98	62.99	59.21	48.17	52.32	42.11	-	-	
	CMPC [30]	RN101	LSTM	61.36	64.53	59.64	49.56	53.44	43.23	-	-	
	LSCM [31]	RN101	LSTM	61.47	64.99	59.55	49.34	53.12	43.50	-	-	
	CMPC+ [49]	RN101	LSTM	62.47	65.08	60.82	50.25	54.04	43.47	-	-	
	MCN [57]	DN53	Bi-GRU	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40	
	EFN [20]	WRN101	Bi-GRU	62.76	65.69	59.67	51.50	55.24	43.01	-	-	
	BUSNet [81]	RN101	Self-Att	63.27	66.41	61.39	51.76	56.87	44.13	-	-	
	CGAN [56]	DN53	Bi-GRU	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69	
	LTS [33]	DN53	Bi-GRU	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25	
	ReSTR [37]	ViT-B	Transformer	67.22	69.30	64.45	55.78	60.44	48.27	-	-	
	PolyFormer-B	Swin-B	BERT-base	74.82	76.64	71.06	67.64	72.89	59.33	67.76	69.05	
	PolyFormer-L	Swin-L	BERT-base	75.96	78.29	73.25	69.33	74.56	61.87	69.20	70.19	
$\begin{aligned} & \text { P } \\ & \text { B } \end{aligned}$	VLT [19]	DN53	Bi-GRU	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65	
	CRIS [76]	RN101	GPT-2	70.47	73.18	66.10	62.27	68.06	53.68	59.87	60.36	
	SeqTR [92]	DN53	Bi-GRU	71.70	73.31	69.82	63.04	66.73	58.97	64.69	65.74	
	RefTr [42]	RN101	BERT-base	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39	
	LAVT [84]	Swin-B	BERT-base	74.46	76.89	70.94	65.81	70.97	59.23	63.34	63.62	
	PolyFormer-B	Swin-B	BERT-base	75.96	77.09	73.22	70.65	74.51	64.64	69.36	69.88	
	PolyFormer-L	Swin-L	BERT-base	76.94	78.49	74.83	72.15	75.71	66.73	71.15	71.17	

Table 1. Comparison with the state-of-the-art methods on three referring image segmentation benchmarks. RN101 denotes ResN +3.9\%, 3.93\%, 5.24\% mloU on challenging RefCOCO+ 101 [25], WRN101 refers to Wide ResNet-101 [88], and DN53 denotes Darknet-53 [65].

Referring image segmentation results

Method		Visual Backbone	Text Encoder	RefCOCO			RefCOCO+			RefCOCOg			
		val		test A	test B	val	test A	test B	val	test			
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	STEP [7]		RN101	Bi-LSTM	60.04	63.46	57.97	48.19	52.33	40.41	-	-	
	BRINet [29]	RN101	LSTM	60.98	62.99	59.21	48.17	52.32	42.11	-	-		
	CMPC [30]	RN101	LSTM	61.36	64.53	59.64	49.56	53.44	43.23	-	-		
	LSCM [31]	RN101	LSTM	61.47	64.99	59.55	49.34	53.12	43.50	-	-		
	CMPC+ [49]	RN101	LSTM	62.47	65.08	60.82	50.25	54.04	43.47	-	-		
	MCN [57]	DN53	Bi-GRU	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40		
	EFN [20]	WRN101	Bi-GRU	62.76	65.69	59.67	51.50	55.24	43.01	-	-		
	BUSNet [81]	RN101	Self-Att	63.27	66.41	61.39	51.76	56.87	44.13	-	-		
	CGAN [56]	DN53	Bi-GRU	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69		
	LTS [33]	DN53	Bi-GRU	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25		
	ReSTR [37]	ViT-B	Transformer	67.22	69.30	64.45	55.78	60.44	48.27	-	-		
	PolyFormer-B	Swin-B	BERT-base	74.82	76.64	71.06	67.64	72.89	59.33	67.76	69.05		
	PolyFormer-L	Swin-L	BERT-base	75.96	78.29	73.25	69.33	74.56	61.87	69.20	70.19	+2.73\%,2.49\% mlou on	
$\begin{aligned} & \text { P } \\ & \text { 夏 } \end{aligned}$	VLT [19]	DN53	Bi-GRU	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65		
	CRIS [76]	RN101	GPT-2	70.47	73.18	66.10	62.27	68.06	53.68	59.87	60.36	most challenging Refcocog	
	SeqTR [92]	DN53	Bi-GRU	71.70	73.31	69.82	63.04	66.73	58.97	64.69	65.74		
	RefTr [42]	RN101	BERT-base	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39		
	LAVT [84]	Swin-B	BERT-base	74.46	76.89	70.94	65.81	70.97	59.23	63.34	63.62		
	PolyFormer-B	Swin-B	BERT-base	75.96	77.09	73.22	70.65	74.51	64.64	69.36	69.88		
	PolyFormer-L	Swin-L	BERT-base	76.94	78.49	74.83	72.15	75.71	66.73	71.15	71.17		

Referring image segmentation results

Method		Visual Backbone	Text Encoder	RefCOCO			RefCOCO+			RefCOCOg		
		val		test A	test B	val	test A	test B	val	test		
$\begin{aligned} & ? \\ & 0 \\ & \hline 0 \end{aligned}$	STEP [7]		RN101	Bi-LSTM	60.04	63.46	57.97	48.19	52.33	40.41	-	-
	BRINet [29]	RN101	LSTM	60.98	62.99	59.21	48.17	52.32	42.11	-	-	
	CMPC [30]	RN101	LSTM	61.36	64.53	59.64	49.56	53.44	43.23	-	-	
	LSCM [31]	RN101	LSTM	61.47	64.99	59.55	49.34	53.12	43.50	-	-	
	CMPC+ [49]	RN101	LSTM	62.47	65.08	60.82	50.25	54.04	43.47	-	-	
	MCN [57]	DN53	Bi-GRU	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40	
	EFN [20]	WRN101	Bi-GRU	62.76	65.69	59.67	51.50	55.24	43.01	-	-	
	BUSNet [81]	RN101	Self-Att	63.27	66.41	61.39	51.76	56.87	44.13	-	-	
	CGAN [56]	DN53	Bi-GRU	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69	
	LTS [33]	DN53	Bi-GRU	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25	
	ReSTR [37]	ViT-B	Transformer	67.22	69.30	64.45	55.78	60.44	48.27	-	-	
	PolyFormer-B	Swin-B	BERT-base	74.82	76.64	71.06	67.64	72.89	59.33	67.76	69.05	
	PolyFormer-L	Swin-L	BERT-base	75.96	78.29	73.25	69.33	74.56	61.87	69.20	70.19	
	VLT [19]	DN53	Bi-GRU	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65	
	CRIS [76]	RN101	GPT-2	70.47	73.18	66.10	62.27	68.06	53.68	59.87	60.36	
	SeqTR [92]	DN53	Bi-GRU	71.70	73.31	69.82	63.04	66.73	58.97	64.69	65.74	
	RefTr [42]	RN101	BERT-base	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39	
	LAVT [84]	Swin-B	BERT-base	74.46	76.89	70.94	65.81	70.97	59.23	63.34	63.62	
	PolyFormer-B	Swin-B	BERT-base	75.96	77.09	73.22	70.65	74.51	64.64	69.36	69.88	
	PolyFormer-L	Swin-L	BERT-base	76.94	78.49	74.83	72.15	75.71	66.73	71.15	71.17	

PolyFormer-L vs. B:
$+1 \sim 2$ points

Table 1. Comparison with the state-of-the-art methods on three referring image segmentation benchmarks. RN101 denotes ResNetaws 101 [25], WRN101 refers to Wide ResNet-101 [88], and DN53 denotes Darknet-53 [65].

Zero-shot Transfer to Referring Video Object Segmentation

Method	Visual Backbone	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
CMSA+RNN [85]	ResNet-50	40.2	36.9	43.5
URVOS [70]	ResNet-50	51.5	47.3	56.0
CITD [44]	ResNet-101	56.4	54.8	58.1
ReferFormer [78]	Swin-L	60.5	57.6	63.4
ReferFormer [78]	Video-Swin-B	61.1	$\mathbf{5 8 . 1}$	64.1
PolyFormer-B \dagger	Swin-B	60.9	56.6	65.2
PolyFormer-L \dagger	Swin-L	$\mathbf{6 1 . 5}$	57.2	$\mathbf{6 5 . 8}$

Best J\&F w/o training on video

Visualization Results on RefCOCOg

(a) "a dark grey dog on a light grey round bed wearing a red collar"
(b) "girl in purple"

(c) "zebra eating grass with a goose park car (e) "a zebra with its (f)" a girl was cooking in front of it" portation terminal" much of its body able portation terminal" much of its

ng (g) "a man wearing a black shirt and a black and white striped apron stirring something in a metal container"

Visualization Results on RefCOCOg

Visualization Results on RefCOCOg

Visualization Results on RefCOCOg

Zero-shot Evaluation on Stable Diffusion Images

(a) "A cat chef cooking (b) "A chair that looks (c) "A small cabin on (d) "A shiba inu puppy (e) "A gentleman (f) "A pikachu (g) "A pig robot fish in a fancy restau- like octopus"
top of a snowy moun- painted by Monet" tain in the style of Disney artstation"
otter in a 19th cen- fine-dining with a preparing a delitury portrait" view to the Eiffel cious meal" Tower"

PolyFormer: Referring Image Segmentation as Sequential Polygon Generation

Jiang Liu ${ }^{1 *+}$

Hui Ding2*

Zhaowei Cai ${ }^{2}$

Yuting Zhang ${ }^{2}$

Ravi Kumar Satzoda²

Vijay Mahadevan² R. Manmatha²
${ }^{1}$ Johns Hopkins University, ${ }^{2}$ AWS AI Labs, ${ }^{*}$ Equal Contribution, ${ }^{\dagger}$ Work done during internship at AWS AI Labs
https://polyformer.github.io/

