PolyFormer: Referring Image Segmentation as Sequential Polygon Generation

Jiang Liu^{1*†}

Hui Ding^{2*} Zhaowei Cai²

Yuting Zhang²

Ravi Kumar Satzoda²

r Vijay Mahadevan² R. Manmatha²

¹ Johns Hopkins University, ² AWS AI Labs, ^{*}Equal Contribution, [†]Work done during internship at AWS AI Labs

https://polyformer.github.io/

Code & Demo Available

PolyFormer Overview

- **Unified framework** for referring image segmentation and referring expression comprehension
- **Regression-based decoder** for accurate coordinate prediction
- Superior performance across all main referring image segmentation

Referring Image Segmentation

a cute corgi holding a sign that says "AWS ROCKS"

Existing Work

- Mask-based dense prediction
 - Neglect the structure among the output predictions
- Complex multi-modal feature fusion

Huang et al. "Referring Image Segmentation via Cross-Modal Progressive Comprehension." CVPR2020

RMI [Liu et al, ICCV2017]

PolyFormer

• Sequence-to-sequence formulation

Model Architecture

Target Sequence Generation

- Polygon ordering
 - Start from top-left
 - Clockwise direction

 (x_1, y_1) , (x_2, y_2) , , (x_K, y_K)

Target Sequence Generation

- Multi-polygon case
 - Separator token <SEP>

$$x_{1}^{p_{1}}, y_{1}^{p_{1}}) \dots (x_{n_{1}}^{p_{1}}, y_{n_{1}}^{p_{1}}) (SEP) (x_{1}^{p_{2}}, y_{1}^{p_{2}}) \dots (x_{n_{2}}^{p_{2}}, y_{n_{2}}^{p_{2}}) \dots (x_{n_{$$

Target Sequence Generation

- Unified sequence with bounding box
 - Bounding box: $(x_1^b, y_1^b), (x_2^b, y_2^b)$
- Final target sequence:

@2023, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark.

aws

Regression-based Decoder

- Previous Seq2Seq framework: Coordinate prediction as a *classification task*
 - *Continuous* coordinates => *discrete* bins
 - quantization error
 - Inaccurate supervision
- PolyFormer: geometric localization as a *regression* task
 - Directly predict floating-point coordinate
 - No quantization error
 - Accurate localization

Regression-based Transformer Decoder

• 2D Coordinate Embedding

$$e_{(x,y)} = (\bar{x} - x)(\bar{y} - y) \cdot e_{(\underline{x},\underline{y})} + (x - \underline{x})(\bar{y} - y) \cdot e_{(\bar{x},\underline{y})} + (\bar{x} - x)(y - \underline{y}) \cdot e_{(\underline{x},\overline{y})} + (x - \underline{x})(y - \underline{y}) \cdot e_{(\bar{x},\overline{y})}.$$

Regression-based Transformer Decoder

- Prediction Heads
 - Coordinate head
 - 3-layer feed-forward network (FFN)

$$(\hat{x}, \hat{y}) = Sigmoid(FFN(Q^N)).$$

- Class head
 - Linear classification layer

$$\hat{p} = W_c Q^N + b_c,$$

 Separator token <SEP>, coordinate token <COO>, end-of-sequence token <EOS>

Training: Polygon Augmentation

polygons at different levels of granularity

(a) Original polygon

(b) Interpolated contour

(c) Sampled polygons

Two stage training

- Pre-train on REC task
 - Visual Genome, RefCOCO, RefCOCO+, RefCOCOg datasets, and Flickr entities
 - ~6M distinct language expressions and 164k images in the training set.

A man with pierced ears is wearing glasses and an orange hat. A man with glasses is wearing a beer can crotched hat. A man with gauges and glasses is wearing a Blitz hat. A man in an orange hat starring at something. A man wears an orange hat and glasses.

Two stage training

- Pre-train on REC task
 - Visual Genome, RefCOCO, RefCOCO+, RefCOCOg datasets, and Flickr entities
 - ~6M distinct language expressions and 164k images in the training set.
- Finetuning on REC + RIS task on RefCOCO, RefCOCO+, RefCOCOg datasets

Method		Visual	Text	H	RefCOC)	R	efCOCO	RefCOCOg		
	Ivicuiou	Backbone	Encoder	val	test A	test B	val	test A	test B	val	test
oloU	STEP [7]	RN101	Bi-LSTM	60.04	63.46	57.97	48.19	52.33	40.41	-	-
	BRINet [29]	RN101	LSTM	60.98	62.99	59.21	48.17	52.32	42.11	-	-
	CMPC [30]	RN101	LSTM	61.36	64.53	59.64	49.56	53.44	43.23	-	-
	LSCM [31]	RN101	LSTM	61.47	64.99	59.55	49.34	53.12	43.50	-	-
	CMPC+ [49]	RN101	LSTM	62.47	65.08	60.82	50.25	54.04	43.47	-	-
	MCN [57]	DN53	Bi-GRU	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40
	EFN [20]	WRN101	Bi-GRU	62.76	65.69	59.67	51.50	55.24	43.01	-	-
	BUSNet [81]	RN101	Self-Att	63.27	66.41	61.39	51.76	56.87	44.13	-	-
	CGAN [56]	DN53	Bi-GRU	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69
	LTS [33]	DN53	Bi-GRU	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25
	ReSTR [37]	ViT-B	Transformer	67.22	69.30	64.45	55.78	60.44	48.27	-	-
	PolyFormer-B	Swin-B	BERT-base	74.82	76.64	71.06	67.64	72.89	59.33	67.76	69.05
	PolyFormer-L	Swin-L	BERT-base	75.96	78.29	73.25	69.33	74.56	61.87	69.20	70.19
	VLT [19]	DN53	Bi-GRU	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65
	CRIS [76]	RN101	GPT-2	70.47	73.18	66.10	62.27	68.06	53.68	59.87	60.36
D	SeqTR [92]	DN53	Bi-GRU	71.70	73.31	69.82	63.04	66.73	58.97	64.69	65.74
mIo	RefTr [42]	RN101	BERT-base	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39
	LAVT [84]	Swin-B	BERT-base	74.46	76.89	70.94	65.81	70.97	59.23	63.34	63.62
C	PolyFormer-B	Swin-B	BERT-base	75.96	77.09	73.22	70.65	74.51	64.64	69.36	69.88
	PolyFormer-L	Swin-L	BERT-base	76.94	78.49	74.83	72.15	75.71	66.73	71.15	71.17

PolyFormer-B outperforms previous methods on each split of the three datasets

Table 1. Comparison with the state-of-the-art methods on three referring image segmentation benchmarks. RN101 denotes ResNet-101 [25], WRN101 refers to Wide ResNet-101 [88], and DN53 denotes Darknet-53 [65].

Method		Visual	Text	I	RefCOC	C	R	efCOCO	RefCOCOg		
		Backbone	Encoder	val	test A	test B	val	test A	test B	val	test
	STEP [7]	RN101	Bi-LSTM	60.04	63.46	57.97	48.19	52.33	40.41	-	-
	BRINet [29]	RN101	LSTM	60.98	62.99	59.21	48.17	52.32	42.11	-	-
	CMPC [30]	RN101	LSTM	61.36	64.53	59.64	49.56	53.44	43.23	-	-
	LSCM [31]	RN101	LSTM	61.47	64.99	59.55	49.34	53.12	43.50	-	-
	CMPC+ [49]	RN101	LSTM	62.47	65.08	60.82	50.25	54.04	43.47	-	-
	MCN [57]	DN53	Bi-GRU	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40
lol	EFN [20]	WRN101	Bi-GRU	62.76	65.69	59.67	51.50	55.24	43.01	-	-
0	BUSNet [81]	RN101	Self-Att	63.27	66.41	61.39	51.76	56.87	44.13	-	-
	CGAN [56]	DN53	Bi-GRU	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69
	LTS [33]	DN53	Bi-GRU	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25
	ReSTR [37]	ViT-B	Transformer	67.22	69.30	64.45	55.78	60.44	48.27	-	-
	PolyFormer-B	Swin-B	BERT-base	74.82	76.64	71.06	67.64	72.89	59.33	67.76	69.05
	PolyFormer-L	Swin-L	BERT-base	75.96	78.29	73.25	69.33	74.56	61.87	69.20	70.19
	VLT [19]	DN53	Bi-GRU	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65
	CRIS [76]	RN101	GPT-2	70.47	73.18	66.10	62.27	68.06	53.68	59.87	60.36
D	SeqTR [92]	DN53	Bi-GRU	71.70	73.31	69.82	63.04	66.73	58.97	64.69	65.74
mIo	RefTr [42]	RN101	BERT-base	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39
	LAVT [84]	Swin-B	BERT-base	74.46	76.89	70.94	65.81	70.97	59.23	63.34	63.62
	PolyFormer-B	Swin-B	BERT-base	75.96	77.09	73.22	70.65	74.51	64.64	69.36	69.88
	PolyFormer-L	Swin-L	BERT-base	76.94	78.49	74.83	72.15	75.71	66.73	71.15	71.17

+3.9%, 3.93%, 5.24% mIoU on challenging RefCOCO+

Table 1. Comparison with the state-of-the-art methods on three referring image segmentation benchmarks. RN101 denotes ResN 101 [25], WRN101 refers to Wide ResNet-101 [88], and DN53 denotes Darknet-53 [65].

	Mathod	Visual	al Text RefCOCO				RefCOCO+ RefCOCOg					
	Meulou	Backbone	Encoder	val	test A	test B	val	test A	test B	val	test	
	STEP [7]	RN101	Bi-LSTM	60.04	63.46	57.97	48.19	52.33	40.41	-	-	
	BRINet [29]	RN101	LSTM	60.98	62.99	59.21	48.17	52.32	42.11	-	-	
	CMPC [30]	RN101	LSTM	61.36	64.53	59.64	49.56	53.44	43.23	-	-	
	LSCM [31]	RN101	LSTM	61.47	64.99	59.55	49.34	53.12	43.50	-	-	
	CMPC+ [49]	RN101	LSTM	62.47	65.08	60.82	50.25	54.04	43.47	-	-	
	MCN [57]	DN53	Bi-GRU	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40	
lol	EFN [20]	WRN101	Bi-GRU	62.76	65.69	59.67	51.50	55.24	43.01	-	-	
0	BUSNet [81]	RN101	Self-Att	63.27	66.41	61.39	51.76	56.87	44.13	-	-	
	CGAN [56]	DN53	Bi-GRU	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69	
	LTS [33]	DN53	Bi-GRU	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25	
	ReSTR [37]	ViT-B	Transformer	67.22	69.30	64.45	55.78	60.44	48.27	-	-	
	PolyFormer-B	Swin-B	BERT-base	74.82	76.64	71.06	67.64	72.89	59.33	67.76	69.05	
	PolyFormer-L	Swin-L	BERT-base	75.96	78.29	73.25	69.33	74.56	61.87	69.20	70.19	+2.73%, 2.49% mloU on
	VLT [19]	DN53	Bi-GRU	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65	
	CRIS [76]	RN101	GPT-2	70.47	73.18	66.10	62.27	68.06	53.68	59.87	60.36	most challenging RefCUC
D	SeqTR [92]	DN53	Bi-GRU	71.70	73.31	69.82	63.04	66.73	58.97	64.69	65.74	
mIol	RefTr [42]	RN101	BERT-base	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39	
	LAVT [84]	Swin-B	BERT-base	74.46	76.89	70.94	65.81	70.97	59.23	63.34	63.62	
	PolyFormer-B	Swin-B	BERT-base	75.96	77.09	73.22	70.65	74.51	64.64	69.36	69.88	
	PolyFormer-L	Swin-L	BERT-base	76.94	78.49	74.83	72.15	75.71	66.73	71.15	71.17	

Table 1. Comparison with the state-of-the-art methods on three referring image segmentation benchmarks. RN101 denotes ResN 101 [25], WRN101 refers to Wide ResNet-101 [88], and DN53 denotes Darknet-53 [65].

Og

	Method	Visual	Text	RefCOCO			R	efCOCO	RefCOCOg		
	Method	Backbone	Encoder	val	test A	test B	val	test A	test B	val	test
	STEP [7]	RN101	Bi-LSTM	60.04	63.46	57.97	48.19	52.33	40.41	-	-
	BRINet [29]	RN101	LSTM	60.98	62.99	59.21	48.17	52.32	42.11	-	-
	CMPC [30]	RN101	LSTM	61.36	64.53	59.64	49.56	53.44	43.23	-	-
	LSCM [31]	RN101	LSTM	61.47	64.99	59.55	49.34	53.12	43.50	-	-
	CMPC+ [49]	RN101	LSTM	62.47	65.08	60.82	50.25	54.04	43.47	-	-
	MCN [57]	DN53	Bi-GRU	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40
lol	EFN [20]	WRN101	Bi-GRU	62.76	65.69	59.67	51.50	55.24	43.01	-	-
0	BUSNet [81]	RN101	Self-Att	63.27	66.41	61.39	51.76	56.87	44.13	-	-
	CGAN [56]	DN53	Bi-GRU	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69
	LTS [33]	DN53	Bi-GRU	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25
	ReSTR [37]	ViT-B	Transformer	67.22	69.30	64.45	55.78	60.44	48.27	-	-
	PolyFormer-B	Swin-B	BERT-base	74.82	76.64	71.06	67.64	72.89	59.33	67.76	69.05
	PolyFormer-L	Swin-L	BERT-base	75.96	78.29	73.25	69.33	74.56	61.87	69.20	70.19
	VLT [19]	DN53	Bi-GRU	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65
	CRIS [76]	RN101	GPT-2	70.47	73.18	66.10	62.27	68.06	53.68	59.87	60.36
D	SeqTR [92]	DN53	Bi-GRU	71.70	73.31	69.82	63.04	66.73	58.97	64.69	65.74
olu	RefTr [42]	RN101	BERT-base	74.34	76.77	70.87	66.75	70.58	59.40	66.63	67.39
Ħ	LAVT [84]	Swin-B	BERT-base	74.46	76.89	70.94	65.81	70.97	59.23	63.34	63.62
ſ	PolyFormer-B	Swin-B	BERT-base	75.96	77.09	73.22	70.65	74.51	64.64	69.36	69.88
L	PolyFormer-L	Swin-L	BERT-base	76.94	78.49	74.83	72.15	75.71	66.73	71.15	71.17

PolyFormer-L vs. B: +1~2 points

Table 1. Comparison with the state-of-the-art methods on three referring image segmentation benchmarks. RN101 denotes ResNet-101 [25], WRN101 refers to Wide ResNet-101 [88], and DN53 denotes Darknet-53 [65].

Zero-shot Transfer to Referring Video Object Segmentation

Method	Visual Backbone	$ \mathcal{J}\&\mathcal{F} $	$\mid \mathcal{J}$	$\mid \mathcal{F}$
CMSA+RNN [85]	ResNet-50	40.2	36.9	43.5
URVOS [70]	ResNet-50	51.5	47.3	56.0
CITD [44]	ResNet-101	56.4	54.8	58.1
ReferFormer [78]	Swin-L	60.5	57.6	63.4
ReferFormer [78]	Video-Swin-B	61.1	58.1	64.1
PolyFormer-B [†]	Swin-B	60.9	56.6	65.2
PolyFormer-L †	Swin-L	61.5	57.2	65.8

Best J&F w/o training on video

Table 3. Comparison with the state-of-the-art methods on Ref-DAVIS17. †means our model is trained on image datasets only. ReferFormer is trained on both image and video datasets.

complex language understanding

complex vision-language semantics

Zero-shot Evaluation on Stable Diffusion Images

@2023, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark.

aws

PolyFormer: Referring Image Segmentation as Sequential Polygon Generation

Jiang Liu^{1*†}

Hui Ding^{2*} Zhaowei Cai²

Yuting Zhang²

Ravi Kumar Satzoda²

r Vijay Mahadevan² R. Manmatha²

¹ Johns Hopkins University, ² AWS AI Labs, ^{*}Equal Contribution, [†]Work done during internship at AWS AI Labs

https://polyformer.github.io/

Code & Demo Available