

Understanding and Improving Visual Prompting: A Label-Mapping Perspective

Aochuan Chen (MSU), Yuguang Yao (MSU), Pin-Yu Chen (IBM Research), Yihua Zhang (MSU), Sijia Liu (MSU)

Visual Prompting for Transfer Learning

Label Mapping

Mapping from source classes to downstream classes.
Existing label mapping methods seem ruleless.
A key building block for visual prompting.

Main Research Question

Given the source model, how to build a mapping from the source label space to the target label space so that the model's prediction directs to the correct target label?

Our Proposal: BLO based ILM-VP

Algorithm 2 Bi-level optimization based ILM-VP algorithm

- 1: Initialize: Given target training set \mathcal{T}_{tr} , pre-trained model f_{θ_s} , prompt pattern initialization δ_0 , and upper-level learning rate λ for SGD
- 2: **for** Epoch n = 0, 1, ..., do
- 3: Lower-level label mapping: Given δ_{n-1} , call LM for each target class y_t in \mathcal{T}_{tr}
- 4: **Upper-level prompt learning**: Given LM, call SGD to update prompt $\delta_n \leftarrow \delta_{n-1}$
- 5: **end for**

Convergence of ILM-VP

Figure 1. ILM-VP training dynamics from epoch 0 to 200. Rows show: (1) VP pattern vs. epoch number; (2-4) Learned source label mapping with respect to target label 'Marigold', 'White Lily', and 'Tree Poppy', together with explanation-by-example-identified source training examples to explain each re-purposed target label; (5) Convergence of training loss and LM difference between adjacent epochs measured by Hamming distance.

Accuracy Improvements

Source Model	ResNet-18 (ImageNet-1K)						ResNet-50 (ImageNet-1K)				ResNeXt-101-32x8d (Instagram)			
Method	<u>Ours</u> ILM-VP	Prompt RLM-VP	baseline FLM-VP	Finet LP	uning FF	<u>Ours</u> ILM-VP	Prompt base. FLM-VP	Finet LP	uning FF	<u>Ours</u> ILM-VP	Prompt base. FLM-VP	Finet LP	uning FF	
Parameter Size	0.05M	0.05M	0.05M	0.51M	11.7M	0.05M	0.05M	0.51M	25.6M	0.05M	0.05M	0.51M	88.8M	
Flowers102	27.9 ± 0.7	11.0 ± 0.5	20.0 ± 0.3	88.0±0.5	97.1 ± 0.7	24.6 ±0.6	20.3±0.3	90.9±0.4	97.9 ± 0.7	27.9±0.3	22.5±0.5	89.1 ± 0.2	99.2 ± 0.5	
DTD	35.3±0.9	16.3 ± 0.7	32.4 ± 0.5	60.0 ± 0.6	65.5 ± 0.9	40.5±0.5	36.9±0.8	67.6±0.3	69.7 ± 0.9	41.4±0.7	40.3±0.5	69.7 ± 0.2	69.1 ± 1.0	
UCF101	23.9±0.5	6.6 ± 0.4	18.9 ± 0.5	63.2 ± 0.8	73.0 ± 0.6	34.6±0.2	33.9 ± 0.4	70.8±0.3	78.0 ± 0.8	43.1±0.8	41.9±0.6	76.9±0.5	79.1 ± 0.7	
Food101	$14.8{\scriptstyle \pm 0.2}$	3.8 ± 0.3	12.8 ± 0.1	50.6±0.3	75.4 ± 0.8	17.0±0.3	15.3±0.2	57.6±0.5	80.3 ± 0.9	23.0±0.4	20.5±0.5	76.0 ± 0.4	82.5 ± 0.3	
GTSRB	52.0±1.2	46.1±1.3	45.5±1.0	77.4 ± 1.2	98.0 ± 0.3	52.5±1.4	47.6±1.1	77.8±0.7	97.6 ± 1.0	59.9 ±1.0	56.2±0.6	73.5 ± 0.7	97.6 ± 0.9	
EuroSAT	85.2 ± 0.6	82.4 ± 0.4	83.8 ± 0.2	93.8 ± 0.3	$98.8{\scriptstyle \pm 0.5}$	83.6±0.7	84.8±0.3	95.7±0.2	98.9 ± 0.6	86.2±0.8	87.8±0.4	93.4 ± 0.3	98.9 ± 0.7	
OxfordPets	65.4 ± 0.7	9.3 ± 0.4	62.9 ± 0.1	87.2 ± 0.6	87.8 ± 0.5	76.2 ± 0.6	76.4±0.2	90.4±0.3	91.9 ± 0.4	78.9±0.8	76.8±0.6	93.6 ± 0.4	90.1 ± 0.9	
StanfordCars	4.5±0.1	0.9 ± 0.1	2.7 ± 0.1	33.8 ± 0.2	81.0 ± 0.1	4.7±0.2	4.2±0.3	40.6±0.1	86.4 ± 0.3	7.0±0.2	4.6±0.1	64.7 ± 0.1	92.5 ± 0.2	
SUN397	13.0 ± 0.2	1.0 ± 0.1	10.4 ± 0.1	46.1 ± 0.2	53.2 ± 0.2	20.3±0.2	19.8 ± 0.1	53.5±0.1	59.0 ± 0.1	23.7±0.2	21.6±0.3	62.3 ± 0.1	61.0 ± 0.2	
CIFAR10	65.5 ± 0.1	63.0 ± 0.1	65.7±0.6	85.9 ± 0.5	96.5 ± 0.4	76.6±0.3	74.8 ± 0.5	90.1±0.1	96.6 ± 0.2	81.7±0.3	80.3±0.3	94.1 ± 0.1	97.1 ± 0.1	
CIFAR100	24.8 ± 0.1	12.9 ± 0.1	18.1 ± 0.2	63.3±0.8	82.5 ± 1.2	38.9±0.3	32.0±0.4	70.7±0.7	83.4 ± 0.9	45.9±0.2	39.7±0.2	76.2 ± 0.9	84.6 ± 1.2	
SVHN	75.2±0.2	73.5 ± 0.3	73.1±0.2	65.0 ± 0.2	96.5 ± 0.3	75.8±0.4	75.6±0.2	63.5 ± 0.2	96.9 ± 0.3	81.4±0.1	79.0±0.5	51.0 ± 0.2	97.1 ± 0.3	
ABIDE	76.9±2.1	74.0 ± 2.2	73.1±1.6	$65.4{\pm}3.8$	60.6 ± 4.2	63.5 ± 2.2	64.4 ±3.4	55.8±2.6	70.2 ± 2.5	67.3±2.6	65.7±3.4	54.8 ± 3.4	73.1 ± 4.2	

Table 1. (Main Results) Performance overview of ILM-VP, prompt baseline methods (RLM-VP and FLM-VP), and finetuning methods (LP and FF) over 13 target image classification datasets using 3 pretrained source models.

Target Dataset Analysis

Figure 2. ILM-VP's improvements over FLM-VP on representative datasets (datasets with improvements over 3%) using ResNet-18.

Figure 3. ILM-VP and FLM-VP performance on different fractions of GTSRB dataset (43 classes and more than 900 training samples per class) using ResNet-18.

Extension: LM in Text Domain for CLIP

Extension: LM in Text Domain for CLIP

Methods	VP+TP Acc(%)	Acc(%)	Ours (VP+TP+LM) Examples of context prompt template \rightarrow target label
Flowers102	70.0	83.7	a close-up photo of a $\{\} \rightarrow$ buttercup
DTD	56.8	63.9	graffiti of a $\{\} \rightarrow$ blotchy
UCF101	66.0	70.6	a $\{\}$ in a video game \rightarrow baseball pitch
Food101	78.9	79.1	a photo of the dirty $\{\} \rightarrow$ crab cake
SVHN	89.9	91.2	a photo of a $\{\} \rightarrow 7$
EuroSAT	96.4	96.9	a pixelated photo of a $\{\} \rightarrow$ river
StanfordCars	57.2	57.6	the toy $\{\} \rightarrow 2011$ audi s6 sedan
SUN397	60.5	61.2	a photo of a large $\{\} \rightarrow$ archive
CIFAR10	93.9	94.4	a pixelated photo of a $\{\} \rightarrow \text{ship}$
ImageNet-R	67.5	68.6	a rendition of a $\{\} \rightarrow$ gold fish
ImageNet-Sketch	38.5	39.7	a sketch of a $\{\} \rightarrow$ eagle

Table 2. Results of CLIP-based prompt learning 'VP+TP+LM' and the baseline 'VP+TP' (restricted to using text prompt template "This is a photo of a {}") over 11 target datasets.

More Explanation Examples

Figure 4. Interpretation merit of ILM vs. FLM, visualized by LM results in VP to re-purpose a ResNet-18 to conduct image classification tasks.

Figure 5. LM results of our proposed 'VP+TP+LM' method for CLIP, which shows significant interpretability.

