

Learning Semantic Relationship Among Instances for Image-Text Matching

Zheren Fu · Zhendong Mao · Yan Song · Yongdong Zhang

University of Science and Technology of China, Hefei, China

Image-text Matching

- ✓ Image-text matching, a **bridge connecting image and language**, is an important task, which generally learns a holistic cross-modal embedding to achieve a high-quality semantic alignment between the two modalities.
- ✓ The critical challenge is accurately and efficiently **learning cross-modal embeddings** and their similarities for images and texts, to achieve a high-quality semantic alignment.

Input

Output

Image-text Matching

- ✓ In general, existing image-text matching methods can be classified into **two paradigms**.
- ✓ The first embedding-based matching separately encodes the whole images and texts into a holistic embedding space, then globally measures the semantic similarity of the two modalities.
- ✓ The second score-based matching applies the cross-modal interaction between visual and textual local features, then learns a cumulative similarity score.

score-based

- ✓ Recently, embedding-based methods have served as the mainstream solution owing to both accuracy and efficiency in image-text matching, which contains **two steps**:
- (1) Capturing the intra-modal relation between visual fragments (*e.g.*, regional features) or textual fragments (*e.g.*, word features) independently, then enhancing the semantic representation of local features.
- (2) Aggregating relation-enhanced local features of two modalities into the holistic embedding space.

- ✓ Existing embedding-based methods only focus on the fragment-level relation modeling and local features interaction within one sample, *e.g.*, the region features inside one image (or the word features inside one text.
- ✓ In this way, the instance-level relation modeling and global embeddings interaction among different samples and modalities, *e.g.*, holistic embeddings of multiple images and texts, are entirely overlooked.

- ✓ Consequently, existing embedding-based methods bring two problem.
- (1) They fail to learn subtle semantic discrepancies among different samples, then can not distinguish hard negative samples with semantic ambiguities because of the heterogeneity of visual and textual semantics.
- (2) They are unable to transfer shared knowledge from diverse sample, then can not effectively learn on these infrequent samples with semantic scarcities.

Contribution

- ✓ In doing so, we propose a Hierarchical **RE**lation **Modeling** framework (HREM) that, for the first time to our knowledge, explicitly captures both fragment-level and instance-level relations to learn holistic embeddings jointly.
- ✓ HREM learns not only contextual semantics among intra-modal fragments to enhance local features, but also the associated semantics among inter-modal instances to distinguish hard negative samples and improve learning on infrequent samples.

- ✓ We propose a novel **stage-three** to exactly capture the semantic relation of cross-modal samples.
- ✓ HREM only needs to capture the instance-level relation for training, then encode multi-modal embeddings independently at the inference stage, to achieve high accuracy and efficiency for image-text matching.
- ✓ Extensive experiments on Flickr30K and MS-COCO show our proposed method outperforms the state-of-the-art methods.

- (1) We first propose a novel cross-embedding association graph, which explicitly identifies the connection relation and learns the relevance relation between batch samples with fragment-level semantic matching.
- (2) Then, we propose two relation interaction mechanisms, which explore inter-modal and intra-modal relations synchronously or asynchronously with our improved attention modules to obtain enhanced embeddings

Fragment-level Relation Modeling

✓ Given the region and word features from the visual and textual encoder, we capture contextual information between these local features and enhance them by constructing a semantic relation graph.

Instance-level Relation Modeling

- ✓ Given multiple image-text pairs and their embeddings, we first build a cross-embedding association graph to capture their connection relation and relevance relation, respectively.
- ✓ Then we design two relation interaction mechanisms to capture the semantic relations between multiple images and texts, where embeddings are updated by the information interaction process.

Instance-level Relation Modeling

✓ The instance-level relation modeling is only designed for the training stage, our framework can encode the cross-modal embeddings without sample interaction at the inference stage.

✓ Extensive experiments on Flickr30K and MS-COCO show our proposed method outperforms the state-of-the-art methods.

	Flickr30K 1K					MS-COCO 1K								
Method	IM	$IG \rightarrow TH$	EXT	TE	$EXT \rightarrow I$	MG	rSum	IM	$G \rightarrow TI$	EXT	TE	$EXT \rightarrow I$	MG	rSum
	R@1	R@5	R@10	R@1	R@5	R@10	ISum	R@1	R@5	R@10	R@1	R@5	R@10	ISum
Region + BiGRU														
VSRN [*] ₂₀₁₉ [20]	71.3	90.6	96.0	54.7	81.8	88.2	482.6	76.2	94.8	98.2	62.8	89.7	95.1	516.8
CVSE ₂₀₂₀ [43]	73.5	92.1	95.8	52.9	80.4	87.8	482.4	74.8	95.1	98.3	59.9	89.4	95.2	512.7
GPO ₂₀₂₁ [4]	76.5	94.2	97.7	56.4	83.4	89.9	498.1	78.5	96.0	98.7	61.7	90.3	95.6	520.8
MV ₂₀₂₂ [24]	79.0	94.9	97.7	59.1	84.6	90.6	505.8	78.7	95.7	98.7	62.7	90.4	95.7	521.9
HREM (Fusion)	79.5	94.3	97.4	59.3	85.1	91.2	506.8	80.0	96.0	98.7	62.7	90.1	95.4	522.8
HREM (Full)*	81.4	96.5	98.5	60.9	85.6	91.3	514.3	81.2	96.5	98.9	63.7	90.7	96.0	527.1
Region + BERT														
CAMERA [*] ₂₀₂₀ [35]	78.0	95.1	97.9	60.3	85.9	91.7	508.9	77.5	96.3	98.8	63.4	90.9	95.8	522.7
DSRAN [*] ₂₀₂₁ [45]	77.8	95.1	97.6	59.2	86.0	91.9	507.6	78.3	95.7	98.4	64.5	90.8	95.8	523.5
GPO ₂₀₂₁ [4]	81.7	95.4	97.6	61.4	85.9	91.5	513.5	79.7	96.4	98.9	64.8	91.4	96.3	527.5
VSRN++2022 [21]	79.2	94.6	97.5	60.6	85.6	91.4	508.9	77.9	96.0	98.5	64.1	91.0	96.1	523.6
HREM (Fusion)	83.3	96.0	98.1	63.5	87.1	92.4	520.4	81.1	96.6	98.9	66.1	91.6	96.5	530.7
HREM (Full)*	84.0	96.1	98.6	64.4	88.0	93.1	524.2	82.9	96.9	99.0	67.1	92.0	96.6	534.6

✓ Extensive experiments on Flickr30K and MS-COCO show our proposed method outperforms the state-of-the-art methods.

		MS-COCO 5K							
Туре	Method	$IMG \rightarrow TEXT$			$TEXT \rightarrow IMG$			-Cum	
		R@1	R@5	R@10	R@1	R@5	R@10	rsum	
Region	Region + BiGRU								
	IMRAM [*] ₂₀₂₀ [3]	53.7	83.2	91.0	39.7	69.1	79.8	416.5	
S	UARDA [*] ₂₀₂₂ [50]	56.2	83.8	91.3	40.6	69.5	80.9	422.3	
	NAAF [*] ₂₀₂₂ [51]	58.9	85.2	92.0	42.5	70.9	81.4	430.9	
	GPO ₂₀₂₁ [4]	56.6	83.6	91.4	39.3	69.9	81.1	421.9	
	CGMN ₂₀₂₂ [5]	53.4	81.3	89.6	41.2	71.9	82.4	419.8	
F	MV ₂₀₂₂ [24]	56.7	84.1	91.4	40.3	70.6	81.6	424.6	
L	HREM (Standalone)	58.4	85.5	92.4	39.8	70.5	81.0	427.6	
	HREM (Fusion)	58.9	85.3	92.1	40.0	70.6	81.2	428.1	
	HREM (Full)*	60.6	86.4	92.5	41.3	71.9	82.4	435.1	
Region + BERT									
	SSAMT ₂₀₂₁ [11]	57.7	84.2	90.8	40.8	70.5	80.5	424.5	
S	DIME [*] ₂₀₂₁ [36]	59.3	85.4	91.9	43.1	73.0	83.1	435.8	
	DCPA ₂₀₂₂ [40]	53.5	82.4	90.2	40.4	71.0	82.0	419.5	
	DSRAN [*] ₂₀₂₁ [45]	55.3	83.5	90.9	41.7	72.7	82.8	426.9	
E	GPO ₂₀₂₁ [4]	58.3	85.3	92.3	42.4	72.7	83.2	434.3	
	VSRN++2022 [21]	54.7	82.9	90.9	42.0	72.2	82.7	425.4	
	HREM (Standalone)	61.8	87.0	93.2	44.0	73.7	83.4	443.1	
	HREM (Fusion)	62.3	87.6	93.4	43.9	73.6	83.3	444.1	
	HREM (Full)*	64.0	88.5	93.7	45.4	75.1	84.3	450.9	

✓ The ablation study show our hierarchical relation modeling methods are meaningful.

Fragment-level		Instanc	ce-level	IMG -	→ TEXT	$\overline{\text{TEXT}} \rightarrow \text{IMG}$		
Visual	Textual	Intra-modal	Inter-modal	R@1	R@5	R@1	T R@5	
		 ✓ 	\checkmark	81.5	94.9	62.3	86.2	
	\checkmark	\checkmark	\checkmark	81.8	95.1	62.4	86.2	
\checkmark		\checkmark	\checkmark	83.1	95.9	63.2	87.0	
\checkmark	\checkmark			80.1	94.8	60.9	85.3	
\checkmark	\checkmark	 ✓ 		80.5	94.7	61.2	85.2	
\checkmark	\checkmark		\checkmark	82.2	95.5	62.6	86.4	
\checkmark	\checkmark	 ✓ 	\checkmark	83.3	96.0	63.5	87.1	

(a) The ablation study of hierarchical relation modeling on Flickr30K

(b) The ablation study of instance-level relation modeling on Flickr30K

Mathada	IMG –	> TEXT	$\text{TEXT} \rightarrow \text{IMG}$		
Methods	R@1	R@5	R@1	T R@5	
w/o connection matrix A	81.4	95.1	61.5	86.3	
w/o relevance matrix \mathbf{S}	81.7	95.3	61.9	86.5	
w/o consistency \mathcal{L}_{cross}	81.6	95.6	61.8	86.7	
w/o regularization \mathcal{L}_{reg}	82.8	95.8	62.9	86.9	
w/o neighbor batch sampling	82.8	95.9	63.1	87.0	
HREM	83.3	96.0	63.5	87.1	

✓ Although our method belongs to the embedding-based image-text matching methods, achieves both high accuracy and efficiency on cross-modal retrieval.

