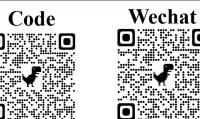
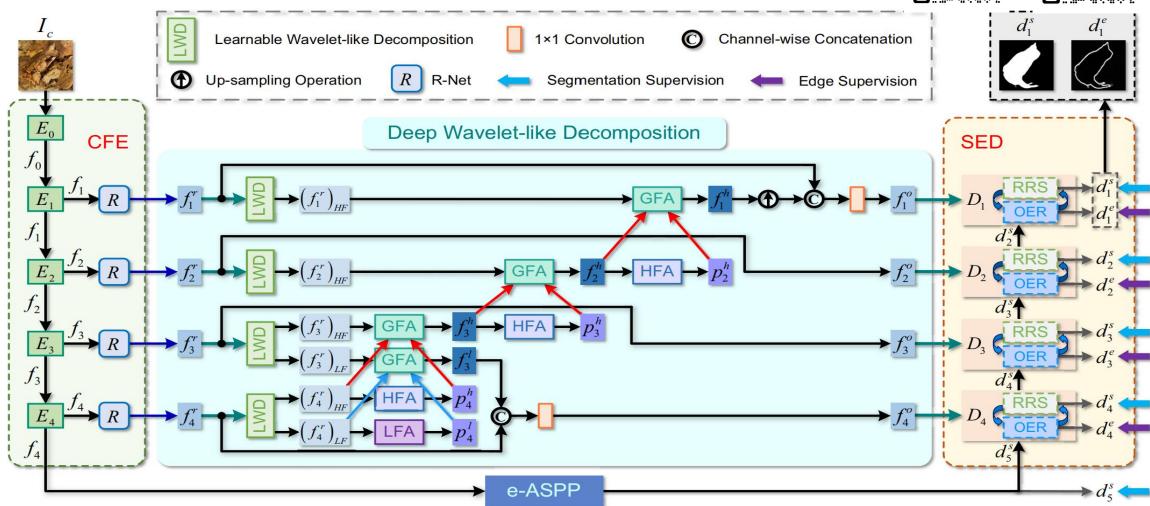
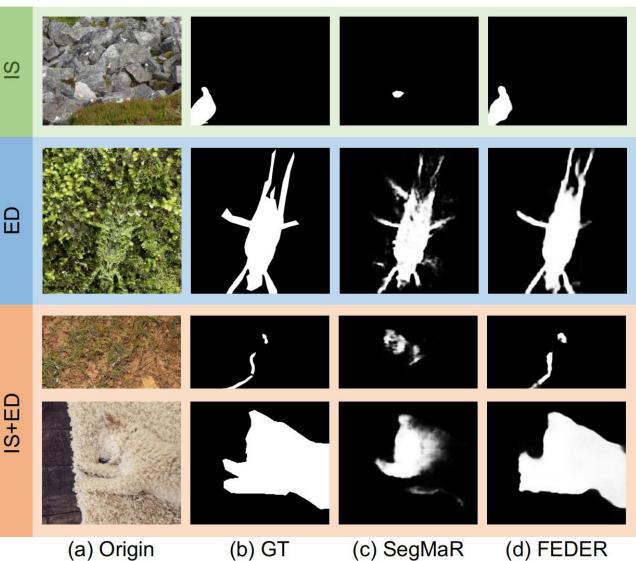


Chunming He


Outline


- Abstract
- Challenge
- Methodology
- Experiments

Abstract

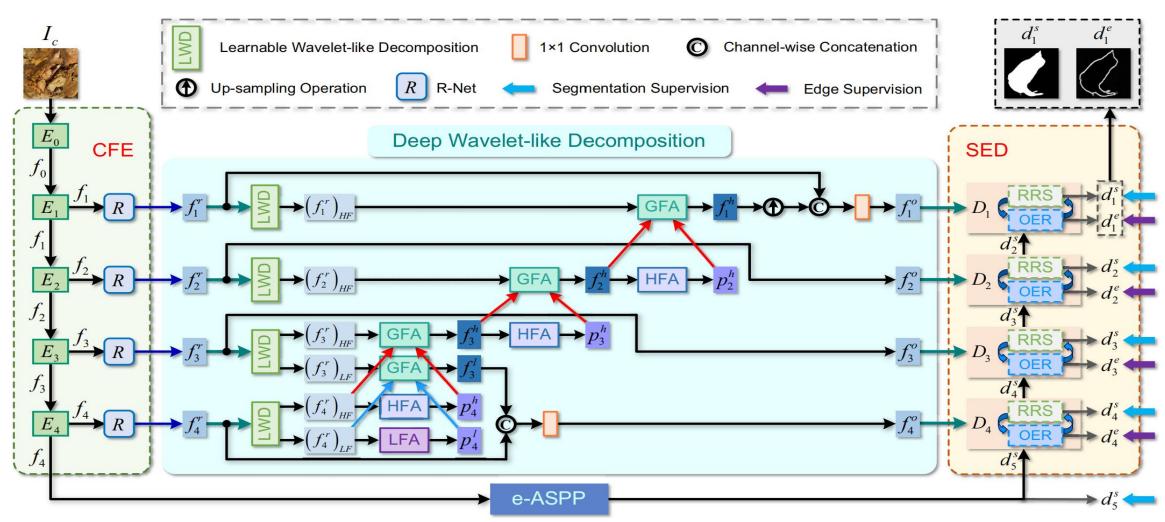


Challenge

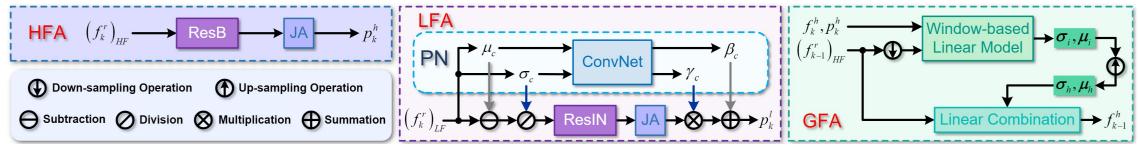
FEDER: Camouflaged Object Detection with Feature Decomposition and Edge Reconstruction

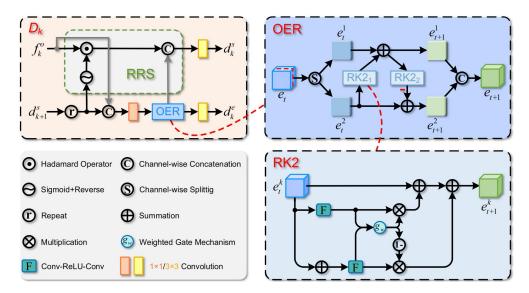
Two challenges:

Intrinsic Similarity (IS) and Edge Disruption (ED).


Scenarios:

For instance, as illustrated in the left figure, the state-of-the-art human perception-based COD I method can only generate inaccurate prediction I maps, such as the vague caddisfly and incomplete dog (Row 2 and 4), or even fail to I detect camouflaged objects like the bird and I snake (Row 1 and 3). Therefore, a better COD method should compensate for the "flaw" in human perception by emphasizing subtle discriminative features.


Methodology



Details of HFA, LFA, and GFA

Details of RRS and OER

$$p_k^h = JA\left(ResB\left((f_k^r)_{HF}\right)\right),\tag{2}$$

$$p_k^l = JA\left(PN\left(ResIN\left(\left(f_k^r\right)_{LF}\right)\right)\right),\tag{3}$$

$$\left(f_{k-1}^{dh}\right)_{i} = \sigma_{w} down \left(\left(f_{k-1}^{r}\right)_{HF}\right)_{i} + \mu_{w}, \forall i \in s_{w}, \quad (4)$$

$$\min_{\sigma_{w},\mu_{w}} \sum_{i \in s_{w}} \left[\left(p_{k}^{h} \right)_{i}^{2} \left(\left(f_{k-1}^{dh} \right)_{i} - \left(\left(f_{k}^{r} \right)_{HF} \right)_{i} \right)^{2} + \epsilon \sigma_{w}^{2} \right], \quad (5)$$

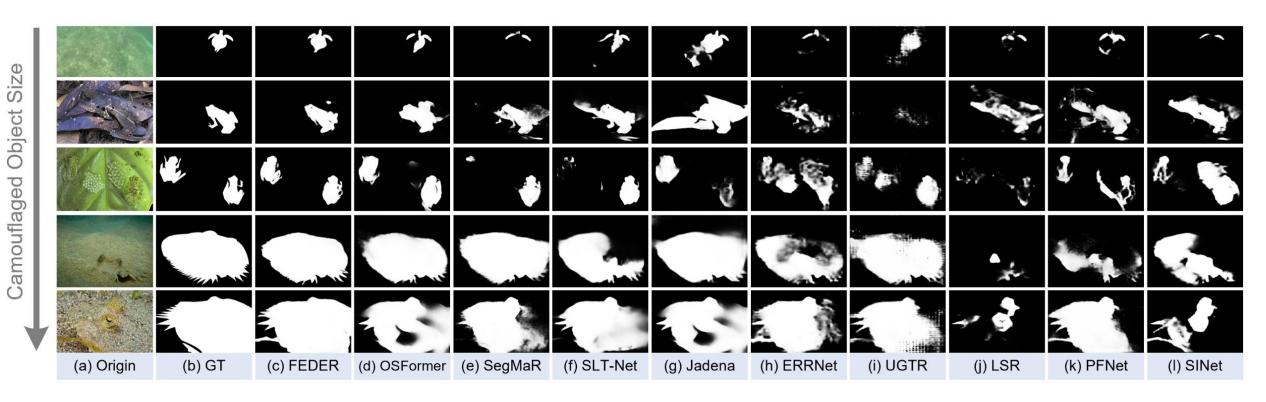
$$f_{k-1}^{dh} = \boldsymbol{\sigma}_i \odot down((f_{k-1}^r)_{HF}) + \boldsymbol{\mu}_i, \tag{6}$$

$$f_{k-1}^{h} = GFA\left(\left(f_{k}^{r}\right)_{HF}, \left(f_{k-1}^{r}\right)_{HF}, p_{k}^{h}\right),$$

$$= \boldsymbol{\sigma}_{h} \odot \left(f_{k-1}^{r}\right)_{HF} + \boldsymbol{\mu}_{h}.$$

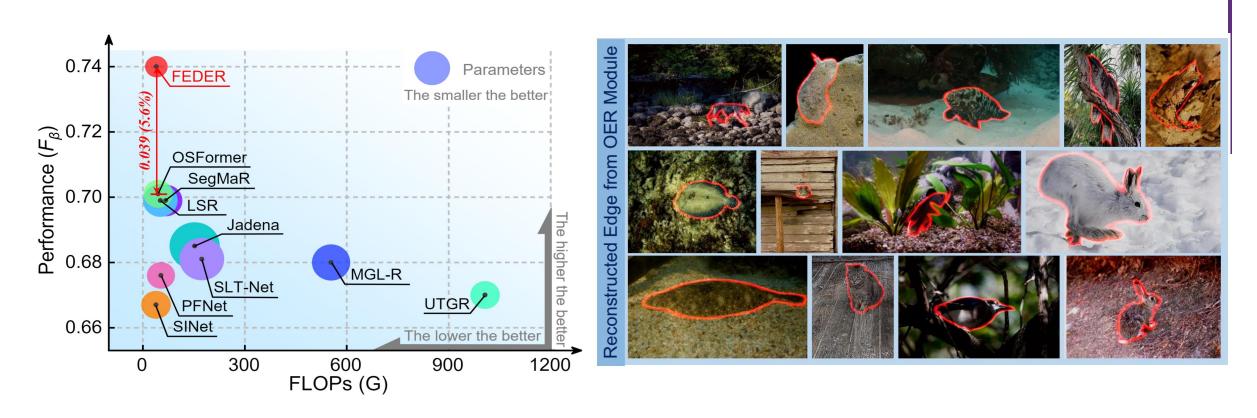
$$(7)$$

$$f_{k-1}^{h} = GFA\left(f_{k}^{h}, \left(f_{k-1}^{r}\right)_{HF}, p_{k}^{h}\right),$$
 (8)



Experiments

Methods	Publications	Backbones	CHAMELEON (76 images)				CAMO (250 images)				COD10K (2,026 images)				NC4K (4,121 images)			
			$M\downarrow$	$F_{\beta} \uparrow$	$E_{\phi} \uparrow$	$S_{\alpha} \uparrow$	$M\downarrow$	$F_{eta} \uparrow$	$E_{\phi} \uparrow$	$S_{\alpha} \uparrow$	$M \downarrow$	$F_{\beta} \uparrow$	$E_{\phi} \uparrow$	$S_{\alpha} \uparrow$	$M\downarrow$	$F_{\beta} \uparrow$	$E_{\phi} \uparrow$	$S_{\alpha} \uparrow$
Common Setting: Single Input Scale and Single Stage																		
SINet [6]	CVPR20	ResNet50	0.034	0.823	0.936	0.872	0.092	0.712	0.804	0.745	0.043	0.667	0.864	0.776	0.058	0.768	0.871	0.808
LSR [25]	CVPR21	ResNet50	0.030	0.835	0.935	0.890	0.080	0.756	0.838	0.787	0.037	0.699	0.880	0.804	0.048	0.802	0.890	0.834
UGTR [48]	ICCV21	ResNet50	0.031	0.805	0.910	0.888	0.086	0.747	0.821	0.784	0.036	0.670	0.852	0.817	0.052	0.778	0.874	0.839
SLT-Net [2]	CVPR22	ResNet50	0.030	0.835	0.940	0.887	0.082	0.763	0.848	0.792	0.036	0.681	0.875	0.804	0.049	0.787	0.886	0.830
SegMaR-1 [14]	CVPR22	ResNet50	0.028	0.828	0.944	0.892	0.072	0.772	0.861	0.805	0.035	0.699	0.890	0.813	0.052	0.767	0.885	0.835
OSFormer [32]	ECCV22	ResNet50	0.028	0.836	0.939	0.891	0.073	0.767	0.858	0.799	0.034	0.701	0.881	0.811	0.049	0.790	0.891	0.832
FEDER-R50		ResNet50	0.028	0.855	0.947	0.894	0.069	0.785	0.873	0.807	0.032	0.740	0.900	0.823	0.045	0.817	0.905	0.846
SINet V2 [4]	TPAMI22	Res2Net50	0.030	0.816	0.942	0.888	0.070	0.779	0.882	0.822	0.037	0.682	0.887	0.815	0.048	0.792	0.903	0.847
BSA-Net [52]	AAAI22	Res2Net50	0.027	0.851	0.946	0.895	0.079	0.768	0.851	0.796	0.034	0.723	0.891	0.818	0.048	0.805	0.897	0.841
FEDER-R2N	_	Res2Net50	0.026	0.856	0.947	0.903	0.066	0.807	0.897	0.836	0.029	0.748	0.911	0.844	0.042	0.824	0.913	0.862
Other Setting: Multiple Input Scales (MIS)																		
ZoomNet [31]	CVPR22	ResNet50	0.024	0.858	0.943	0.902	0.066	0.792	0.877	0.820	0.029	0.740	0.888	0.838	0.043	0.814	0.896	0.853
FEDER-MIS	_	ResNet50	0.023	0.869	0.959	0.906	0.064	0.801	0.893	0.827	0.028	0.756	0.913	0.837	0.041	0.832	0.915	0.859
	Other Setting: Multiple Stages (MS)																	
SegMaR-4 [14]	CVPR22	ResNet50	0.025	0.855	0.955	0.906	0.071	0.779	0.865	0.815	0.033	0.737	0.896	0.833	0.047	0.793	0.892	0.845
FEDER-MS-4	_	ResNet50	0.025	0.874	0.964	0.907	0.067	0.809	0.886	0.822	0.028	0.752	0.917	0.851	0.042	0.827	0.917	0.863



Computational efficiency

Edge reconstruction results

Thanks for listening.

Chunming He