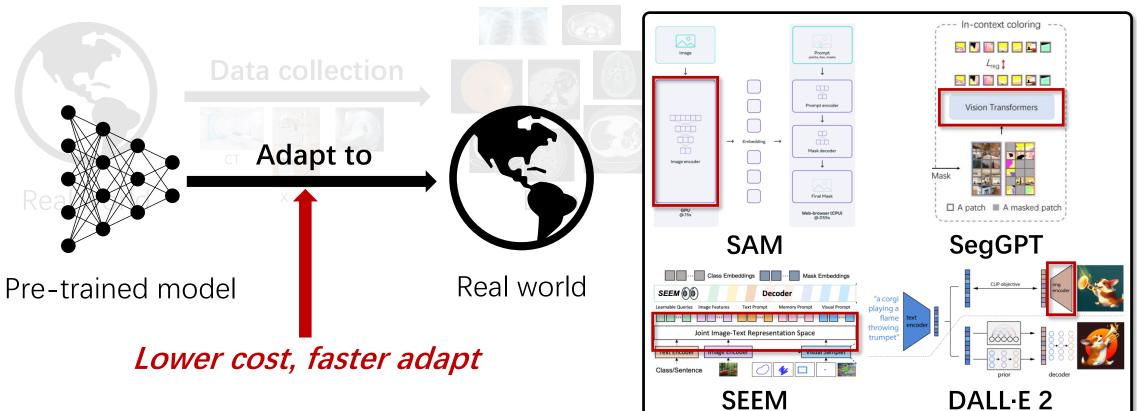


GEOMETRIC VISUAL SIMILARITY LEARNING

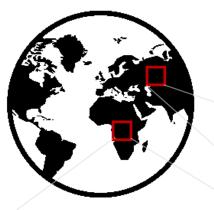
IN 3D MEDICAL IMAGE SELF-SUPERVISED PRE-TRAINING

He Yuting (何字霆) Southeast University

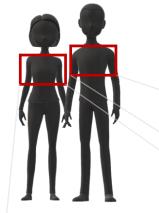


BACKGROUND:

SELF-SUPERVISED PRE-TRAINING


Basis of AGI…

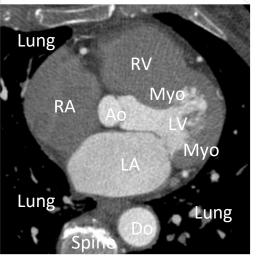
He, Y., et al. (2023). Geometric Visual Similarity Learning in 3D Medical Image Self-supervised Pre-training. *IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023*

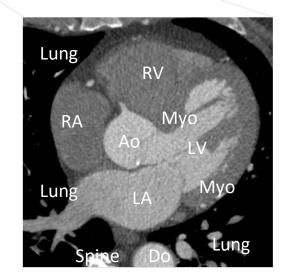

BACKGROUND:

MEDICAL IMAGES V.S. NATURAL IMAGES

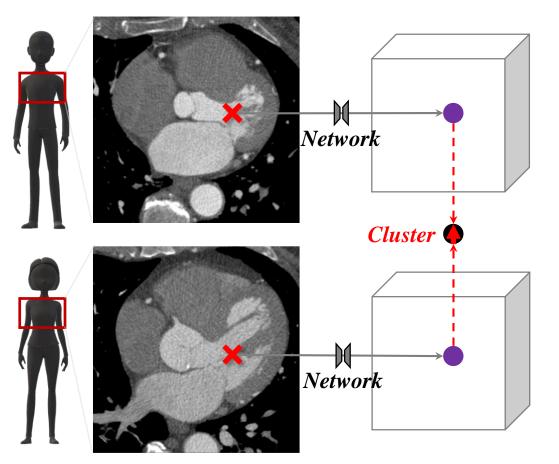
Natural images

- ✓ Scan from **large** scopes
- ✓ Nonlimited range and pose
- Large inter-image difference

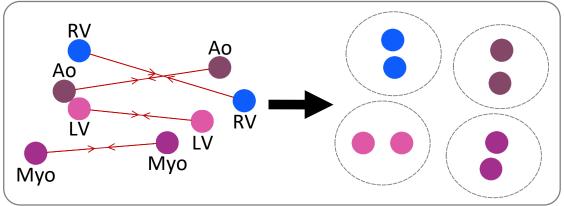

Medical images

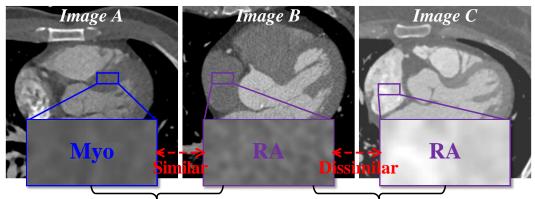

- ✓ Scan from small scopes
- ✓ Limited range and pose
- Large inter-image similarity

何字霆


Opportunity: Learning inter-image similarity for the clustering of the same semantic regions

BACKGROUND:

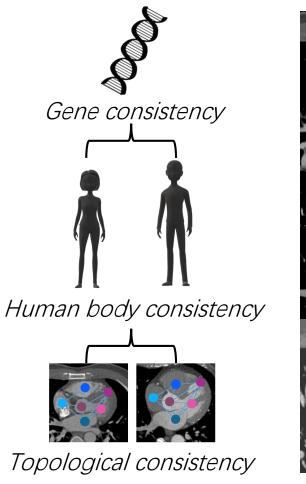

LIMITATION

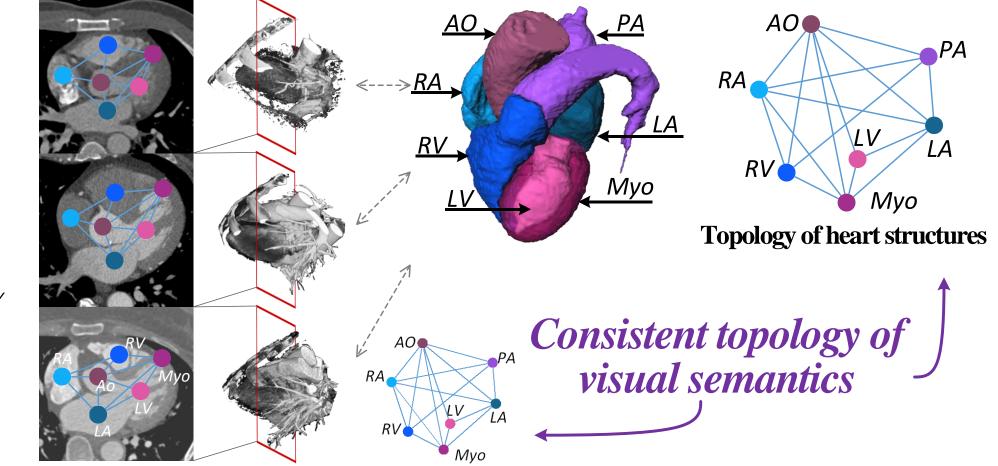


Wang, X., et al. (2021). Dense contrastive learning for self-supervised visual pre-training. CVPR (pp. 3024-3033).

DenseCL, DeepCluster, etc.

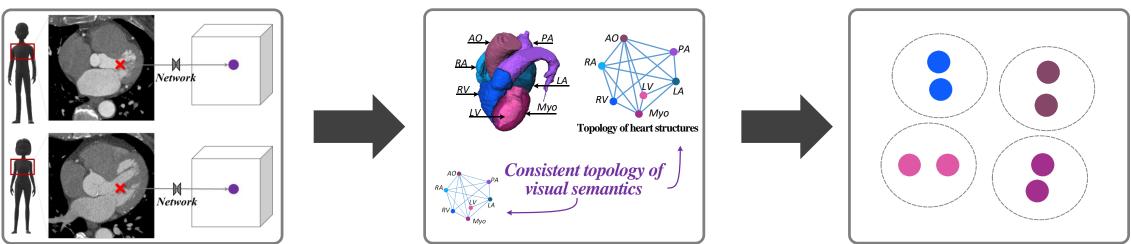
Limitation: unreliable inter-image correspondence


a) Different semantic regions with similar appearance


b) Same semantic regions with dissimilar appearance

MOTIVATION: Topological invariance

何字霆

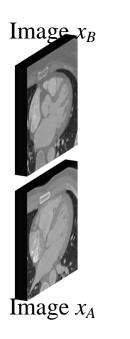


Hypothesis: Keeping the topology of 3D medical images will enhance the correspondence discovery

CONTRIBUTION:

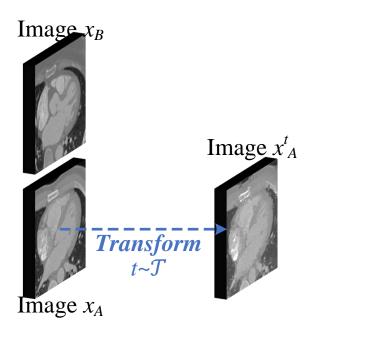
GEOMETRIC VISUAL SIMILARITY LEARNING

何字霆


Representation Correspondence discovery based on topology Clustering effect

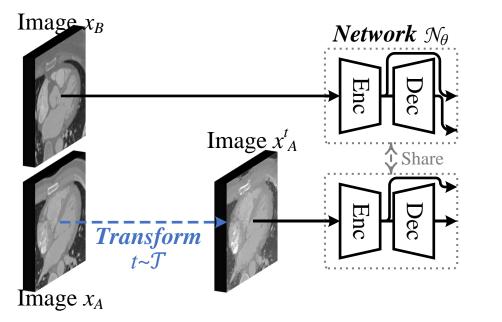
- Advances the learning of inter-image similarity in 3D medical image SSP pushing the representability of pre-trained models;
- Propose the Geometric Visual Similarity Learning (GVSL) that embeds the prior of topological invariance into the correspondence learning;
- Present a novel SSP head, Z-Matching head, for simultaneously powerful global and local representation via GVSL.

GEOMETRIC VISUAL SIMILARITY LEARNING



Two 3D images

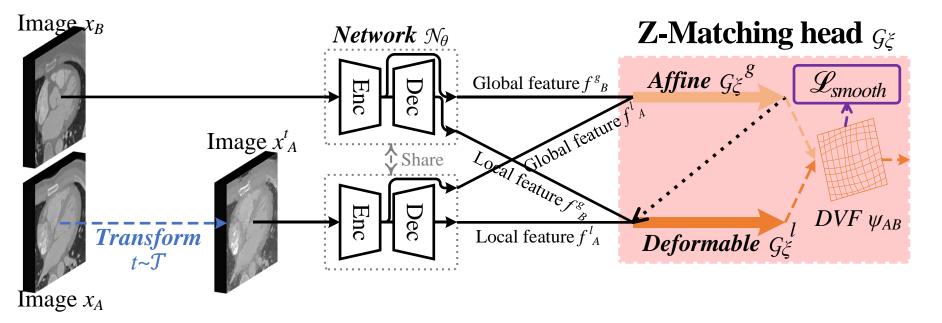
GEOMETRIC VISUAL SIMILARITY LEARNING



Augmentation for feature diversity

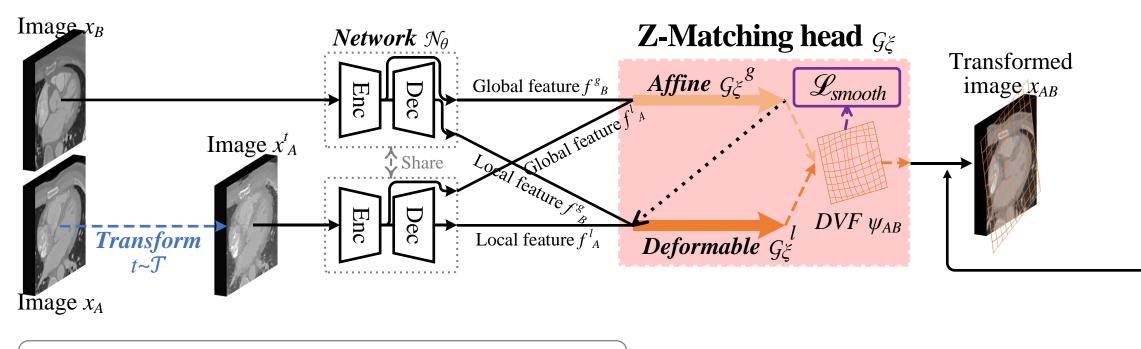
GEOMETRIC VISUAL SIMILARITY LEARNING

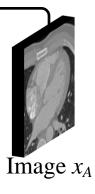
何字霆



Feature extraction via two shared-weight networks

GEOMETRIC VISUAL SIMILARITY LEARNING

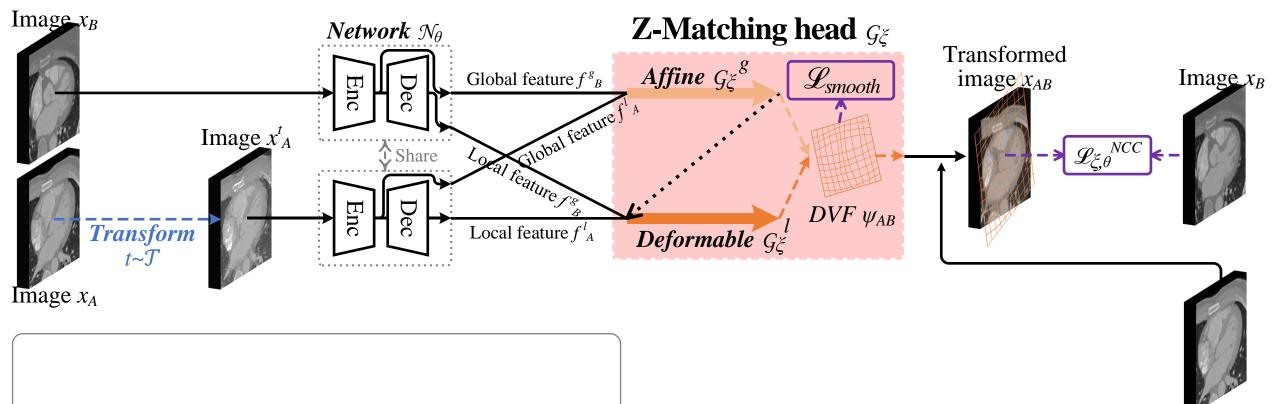

何字霆

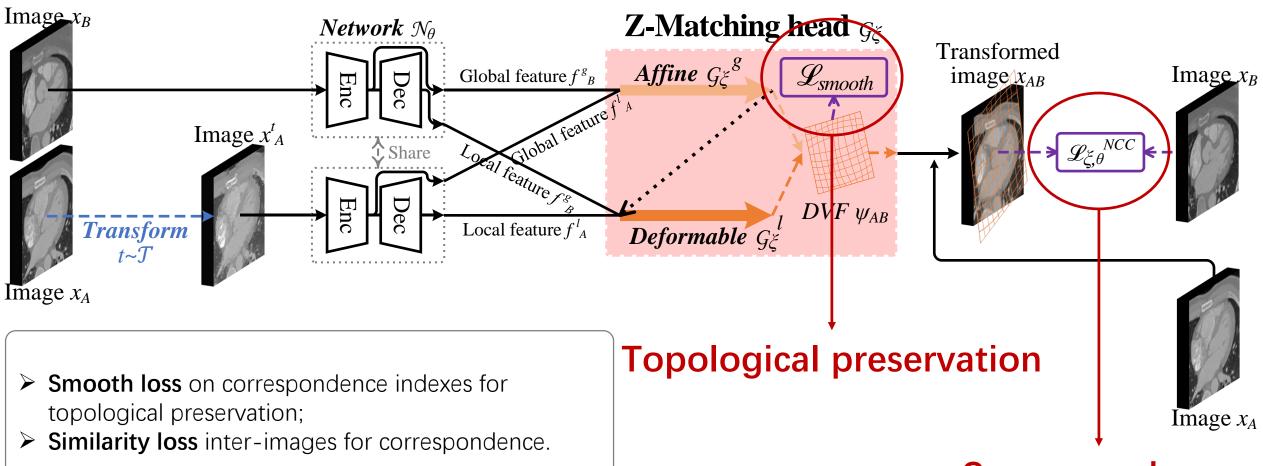

Predict correspondence

GEOMETRIC VISUAL SIMILARITY LEARNING

Deform one image to the other

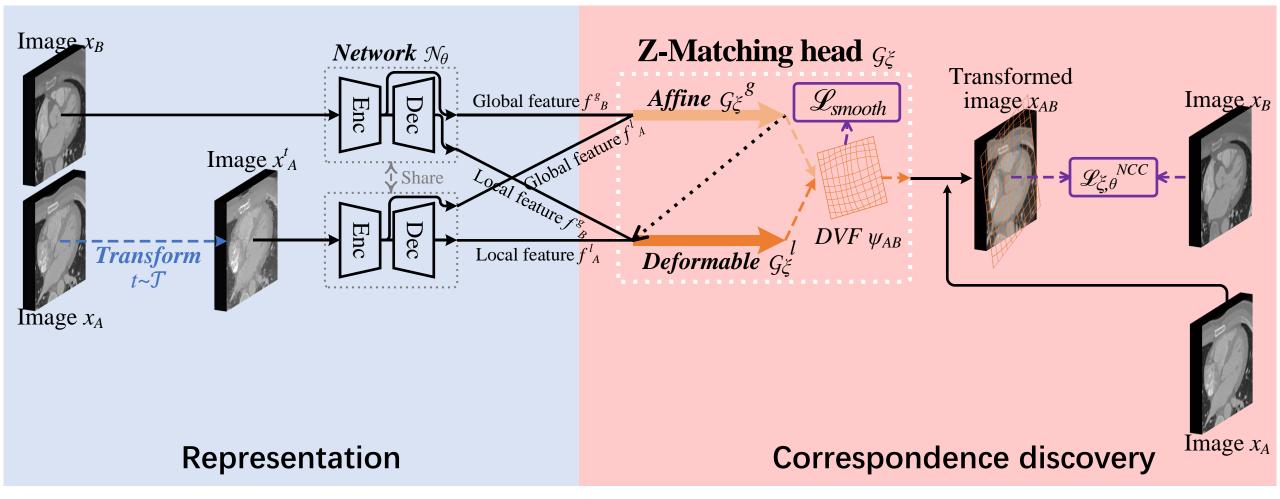
GEOMETRIC VISUAL SIMILARITY LEARNING



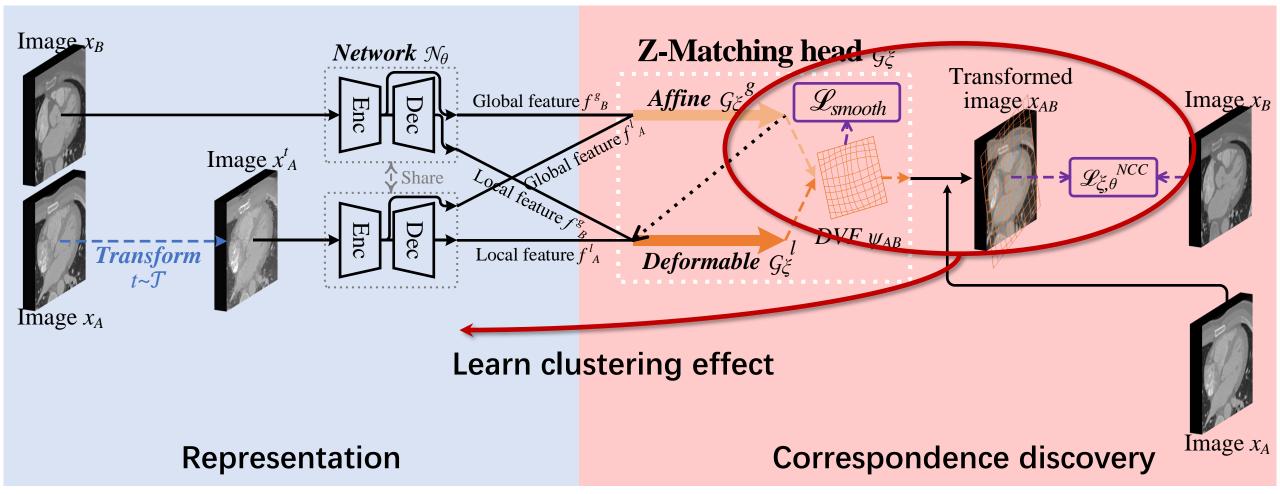

Image x_A

何字霆

Train their alignment

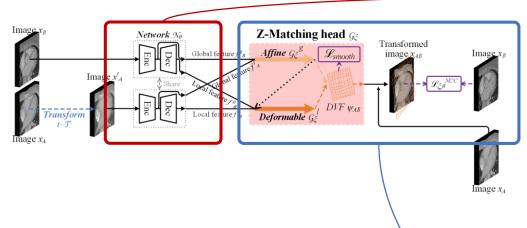

GEOMETRIC VISUAL SIMILARITY LEARNING

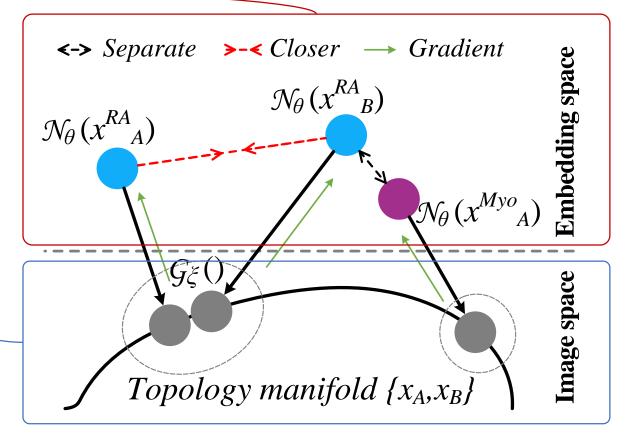
Correspondence



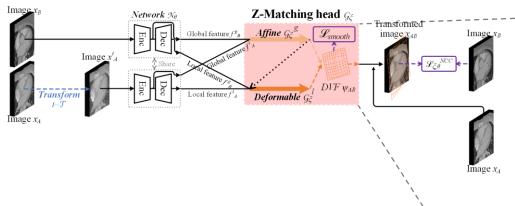
GEOMETRIC VISUAL SIMILARITY LEARNING

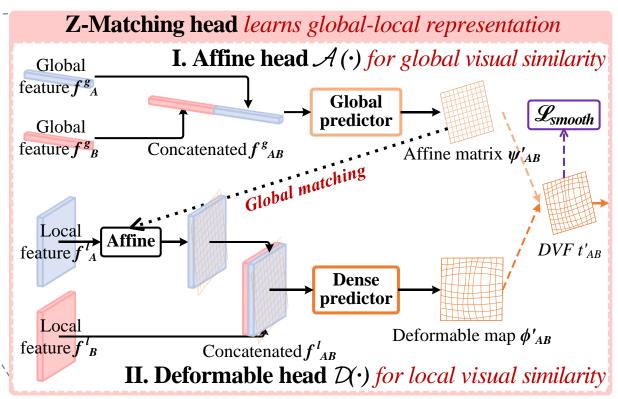
GEOMETRIC VISUAL SIMILARITY LEARNING



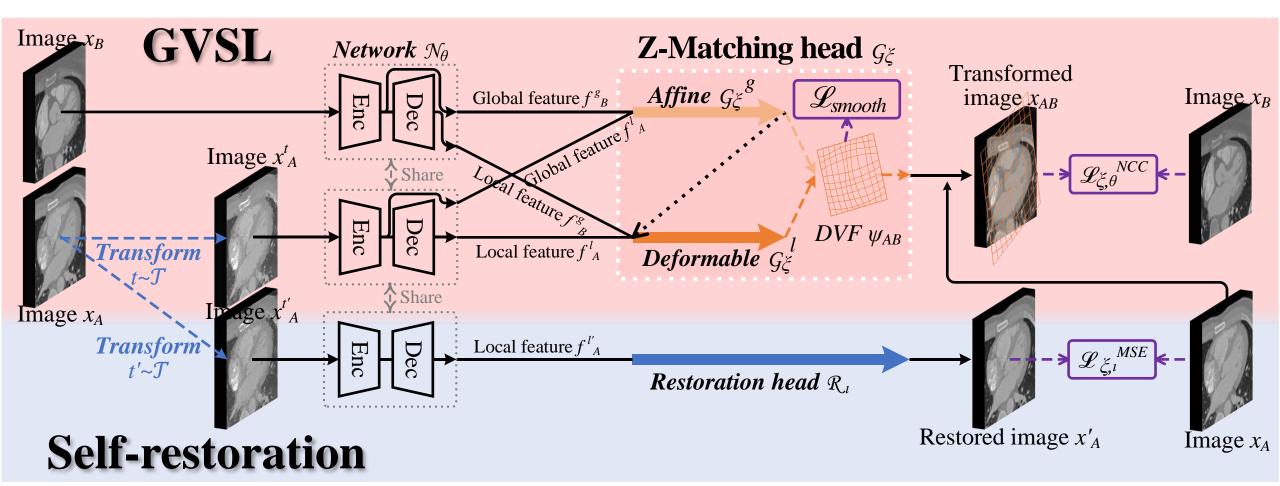

METHODOLOGY (INTUITIONS):

GEOMETRIC VISUAL SIMILARITY LEARNING

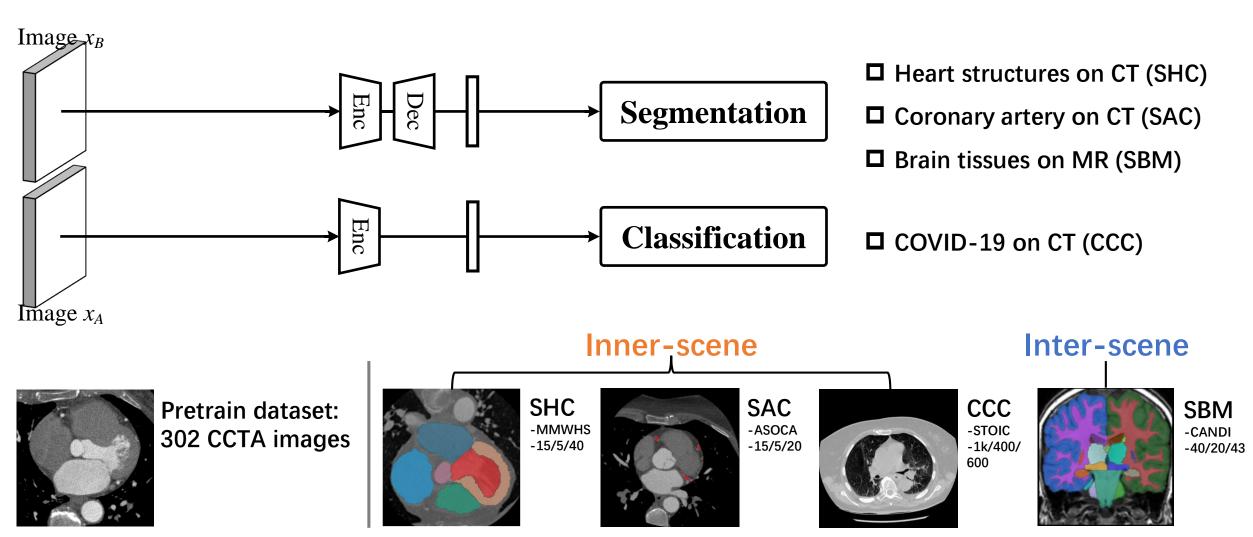

Implicitly embed a topology manifold inner the images into the measurement process, and measure the similarity on this topology manifold.



Z-MATCHING HEAD


- Affine head: global visual similarity and alignment for global representation
- Deformable head: local visual similarity and alignment for dense representation

SELF-RESTORATION FOR WARM-UP



EVALUATION TASKS

LINEAR AND FINE-TUNING EVALUATION

Pre-training	a) Linear: powerful representation			b) Fine-tuning: great transferring				
Tie-training	$SHC_{DSC\%}$	$SAC_{DSC\%}$	$\mathrm{CCC}_{AUC\%}$	$\mathrm{SBM}_{DSC\%}$	$SHC_{DSC\%}$	$\mathrm{SAC}_{DSC\%}$	$\text{CCC}_{AUC\%}$	$\mathrm{SBM}_{DSC\%}$
		Inner scene		Inter scene		Inner scene		Inter scene
Scratch	21.9	10.0	52.7	56.4	87.8	80.4	74.4	89.7
Denosing [40]	$31.4_{(+9.5)}$	$9.3_{(-0.7)}$	$57.9_{(+5.2)}$	$28.3_{(-28.1)}$	$90.3_{(+2.5)}$	80.5 (+0.1)	$75.6_{(+1.2)}$	89.7
In-painting [30]	$32.3_{(+10.4)}$	$5.9_{(-4.1)}$	$57.1_{(+4.4)}$	$25.0_{(-31.4)}$	$90.4_{(+2.6)}$	$80.3_{(-0.1)}$	$79.9_{(+5.5)}$	$89.9_{(+0.2)}$
Models Genesis [48]	$47.4_{(+25.5)}$	$22.5_{(+12.5)}$	$60.4_{(+7.7)}$	$44.9_{(-11.5)}$	$90.3_{(+2.5)}$	$79.9_{(-0.5)}$	$80.7_{(+6.3)}$	$89.4_{(-0.3)}$
Rotation [23]	$56.1_{(+34.2)}$	$21.9_{(+11.9)}$	62.1 (+9.4)	$54.1_{(-2.3)}$	$90.6_{(+2.8)}$	$81.1_{(+0.7)}$	$77.1_{(+2.7)}$	$89.6_{(-0.1)}$
DeepCluster [2]	$55.9_{(+34.0)}$	$4.4_{(-5.6)}$	$57.9_{(+5.2)}$	$67.5_{(+11.1)}$	85.4(-2.4)	$80.5_{(+0.1)}$	$59.9_{(-14.5)}$	$89.1_{(-0.6)}$
SimSiam [4]	$56.5_{(+34.6)}$	$9.7_{(-0.3)}$	$61.0_{(+8.3)}$	$66.2_{(+9.8)}$	$87.5_{(-0.3)}$	$80.1_{(-0.3)}$	$73.6_{(-0.8)}$	$89.8_{(+0.1)}$
BYOL [7]	$46.9_{(+25.0)}$	$8.6_{(-1.4)}$	$53.7_{(+1.0)}$	$52.7_{(-3.7)}$	88.6(+0.8)	80.7 (+0.3)	$76.5_{(+2.1)}$	$89.5_{(-0.2)}$
SimCLR [3]	$48.7_{(+26.8)}$	$15.5_{(+5.5)}$	$61.3_{(+8.6)}$	$58.7_{(+2.3)}$	86.9 (-0.9)	$79.9_{(-0.5)}$	$74.3_{(-0.1)}$	$89.3_{(-0.4)}$
w/o Z-Matching	$49.1_{(+27.2)}$	$21.1_{(+11.1)}$	$55.8_{(+3.4)}$	$45.1_{(-11.3)}$	88.3 _(+0.5)	$81.2_{(+0.8)}$	$81.3_{(+6.9)}$	89.7
w/o Fundament	$45.3_{(+23.4)}$	$0.0_{(-10.0)}$	$58.8_{(+6.4)}$	$48.5_{(-7.9)}$	$87.0_{(-0.8)}$	79.5 (-0.9)	$76.6_{(+2.2)}$	$89.0_{(-0.7)}$
w/o Affine head	$57.7_{(+35.8)}$	$17.9_{(+7.9)}$	$57.6_{(+4.9)}$	$53.4_{(-3.0)}$	$89.4_{(+1.6)}$	82.3 (+1.9)	$79.8_{(+5.4)}$	89.8 _(+0.1)
Our GVSL (Whole)	68.4 (+46.5)	28.7 (+18.7)	$60.8_{(+8.1)}$	79.9 _(+23.5)	91.2 (+3.4)	$81.3_{(+0.9)}$	$82.2_{(+7.8)}$	90.0 (+0.3)

> Powerful inner-scene transferring for both large and small structures

LINEAR AND FINE-TUNING EVALUATION

Pre-training	a) Linear: powerful representation			b) Fine-tuning: great transferring				
ric-uaining	$\mathrm{SHC}_{DSC\%}$	$SAC_{DSC\%}$	$\text{CCC}_{AUC\%}$	$SBM_{DSC\%}$	$\mathrm{SHC}_{DSC\%}$	$SAC_{DSC\%}$	$\text{CCC}_{AUC\%}$	$SBM_{DSC\%}$
		Inner scene		Inter scene	7	Inner scene		Inter scene
Scratch	21.9	10.0	52.7	56.4	87.8	80.4	74.4	89.7
Denosing [40]	$31.4_{(+9.5)}$	$9.3_{(-0.7)}$	$57.9_{(+5.2)}$	$28.3_{(-28.1)}$	$90.3_{(+2.5)}$	80.5 (+0.1)	75.6 _(+1.2)	89.7
In-painting [30]	$32.3_{(+10.4)}$	$5.9_{(-4.1)}$	$57.1_{(+4.4)}$	$25.0_{(-31.4)}$	$90.4_{(+2.6)}$	$80.3_{(-0.1)}$	$79.9_{(+5.5)}$	89.9(+0.2)
Models Genesis [48]	$47.4_{(+25.5)}$	$22.5_{(+12.5)}$	$60.4_{(+7.7)}$	$44.9_{(-11.5)}$	$90.3_{(+2.5)}$	$79.9_{(-0.5)}$	$80.7_{(+6.3)}$	89.4 _(-0.3)
Rotation [23]	$56.1_{(+34.2)}$	$21.9_{(+11.9)}$	62.1 (+9.4)	$54.1_{(-2.3)}$	$90.6_{(+2.8)}$	$81.1_{(+0.7)}$	$77.1_{(+2.7)}$	89.6(-0.1)
DeepCluster [2]	$55.9_{(+34.0)}$	$4.4_{(-5.6)}$	$57.9_{(+5.2)}$	$67.5_{(+11.1)}$	$85.4_{(-2.4)}$	$80.5_{(+0.1)}$	$59.9_{(-14.5)}$	89.1 _(-0.6)
SimSiam [4]	$56.5_{(+34.6)}$	$9.7_{(-0.3)}$	$61.0_{(+8.3)}$	$66.2_{(+9.8)}$	$87.5_{(-0.3)}$	$80.1_{(-0.3)}$	$73.6_{(-0.8)}$	89.8(+0.1)
BYOL [7]	$46.9_{(+25.0)}$	$8.6_{(-1.4)}$	$53.7_{(+1.0)}$	$52.7_{(-3.7)}$	$88.6_{(+0.8)}$	80.7 _(+0.3)	$76.5_{(+2.1)}$	89.5 _(-0.2)
SimCLR [3]	$48.7_{(+26.8)}$	$15.5_{(+5.5)}$	$61.3_{(+8.6)}$	$58.7_{(+2.3)}$	$86.9_{(-0.9)}$	$79.9_{(-0.5)}$	$74.3_{(-0.1)}$	$89.3_{(-0.4)}$
w/o Z-Matching	$49.1_{(+27.2)}$	$21.1_{(+11.1)}$	$55.8_{(+3.4)}$	$45.1_{(-11.3)}$	$88.3_{(+0.5)}$	81.2(+0.8)	81.3(+6.9)	89.7
w/o Fundament	$45.3_{(+23.4)}$	$0.0_{(-10.0)}$	$58.8_{(+6.4)}$	$48.5_{(-7.9)}$	$87.0_{(-0.8)}$	79.5 (-0.9)	$76.6_{(+2.2)}$	89.0 _(-0.7)
w/o Affine head	$57.7_{(+35.8)}$	$17.9_{(+7.9)}$	$57.6_{(+4.9)}$	$53.4_{(-3.0)}$	$89.4_{(+1.6)}$	82.3 (+1.9)	79.8(+5.4)	$89.8_{(\pm 0.1)}$
Our GVSL (Whole)	68.4 (+46.5)	28.7 _(+18.7)	$60.8_{(+8.1)}$	79.9 _(+23.5)	91.2 _(+3.4)	$81.3_{(+0.9)}$	82.2 (+7.8)	90.0 (+0.3)

> Effective inter-scene transferring, but is not significant in fine-tuning

LINEAR AND FINE-TUNING EVALUATION

Dense

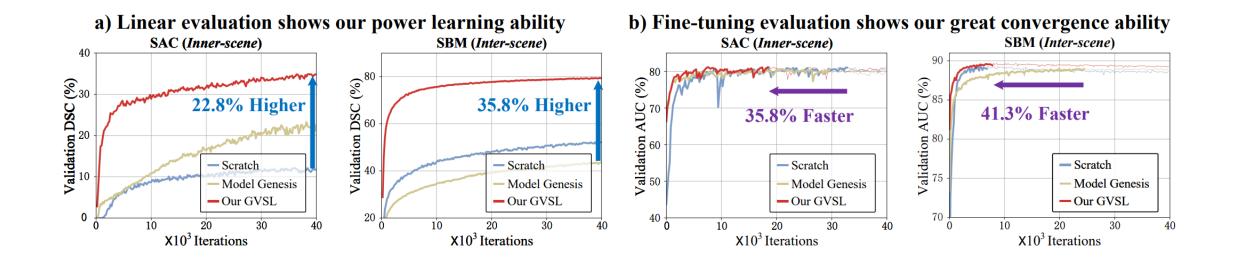
Pre-training		a) Linear: powerful representationb) Fine-tuning: great transferring							
1 ic-u anning	$\mathrm{SHC}_{DSC\%}$	$SAC_{DSC\%}$	CCC _{AUC} %	$SBM_{DSC\%}$	SHC _{DSC} %	$SAC_{DSC\%}$	- CCC _{AUC} %	$SBM_{DSC\%}$	
		Inner scene		Inter scene		Inner scene		Inter scene	
Scratch	21.9	10.0	52.7	56.4	87.8	80.4	74.4	89.7	
Denosing [40]	$31.4_{(+9.5)}$	$9.3_{(-0.7)}$	$57.9_{(+5.2)}$	$28.3_{(-28.1)}$	$90.3_{(+2.5)}$	80.5 (+0.1)	75.6 _(+1.2)	89.7	
In-painting [30]	$32.3_{(+10.4)}$	$5.9_{(-4.1)}$	$57.1_{(+4.4)}$	$25.0_{(-31.4)}$	$90.4_{(+2.6)}$	$80.3_{(-0.1)}$	$79.9_{(+5.5)}$	89.9 _(+0.2)	
Models Genesis [48]	$47.4_{(+25.5)}$	$22.5_{(+12.5)}$	$60.4_{(+7.7)}$	$44.9_{(-11.5)}$	$90.3_{(+2.5)}$	$79.9_{(-0.5)}$	$80.7_{(+6.3)}$	$89.4_{(-0.3)}$	
Rotation [23]	$56.1_{(+34.2)}$	$21.9_{(+11.9)}$	62.1 (+9.4)	$54.1_{(-2.3)}$	90.6 _(+2.8)	$81.1_{(+0.7)}$	$77.1_{(+2.7)}$	$89.6_{(-0.1)}$	
DeepCluster [2]	$55.9_{(+34.0)}$	$4.4_{(-5.6)}$	57.9(+5.2)	67.5 _(+11.1)	$85.4_{(-2.4)}$	$80.5_{(+0.1)}$	$59.9_{(-14.5)}$	$89.1_{(-0.6)}$	
SimSiam [4]	$56.5_{(+34.6)}$	$9.7_{(-0.3)}$	$61.0_{(+8.3)}$	66.2 _(+9.8)	$87.5_{(-0.3)}$	$80.1_{(-0.3)}$	$73.6_{(-0.8)}$	89.8 _(+0.1)	
BYOL [7]	$46.9_{(+25.0)}$	$8.6_{(-1.4)}$	$53.7_{(+1.0)}$	$52.7_{(-3.7)}$	88.6(+0.8)	80.7 (+0.3)	$76.5_{(+2.1)}$	$89.5_{(-0.2)}$	
SimCLR [3]	$48.7_{(+26.8)}$	$15.5_{(+5.5)}$	$61.3_{(+8.6)}$	$58.7_{(+2.3)}$	86.9 (-0.9)	$79.9_{(-0.5)}$	$74.3_{(-0.1)}$	$89.3_{(-0.4)}$	
w/o Z-Matching	$49.1_{(+27.2)}$	$21.1_{(+11.1)}$	$55.8_{(+3.4)}$	$45.1_{(-11.3)}$	$88.3_{(+0.5)}$	$81.2_{(+0.8)}$	$81.3_{(+6.9)}$	89.7	
w/o Fundament	$45.3_{(+23.4)}$	$0.0_{(-10.0)}$	$58.8_{(+6.4)}$	$48.5_{(-7.9)}$	$87.0_{(-0.8)}$	79.5 (-0.9)	$76.6_{(+2.2)}$	$89.0_{(-0.7)}$	
w/o Affine head	57.7(+35.8)	$17.9_{(+7.9)}$	$57.6_{(+4.9)}$	$53.4_{(-3.0)}$	$89.4_{(\pm 1.6)}$	$82.3_{(+1.9)}$	$79.8_{(+5,4)}$	$89.8_{(+0.1)}$	
Our GVSL (Whole)	68.4 (+46.5)	28.7 _(+18.7)	$60.8_{(+8.1)}$	79.9 _(+23.5)	91.2 _(+3.4)	$81.3_{(+0.9)}$	82.2 _(+7.8)	90.0 (+0.3)	

Global

Superiority in global and dense prediction tasks

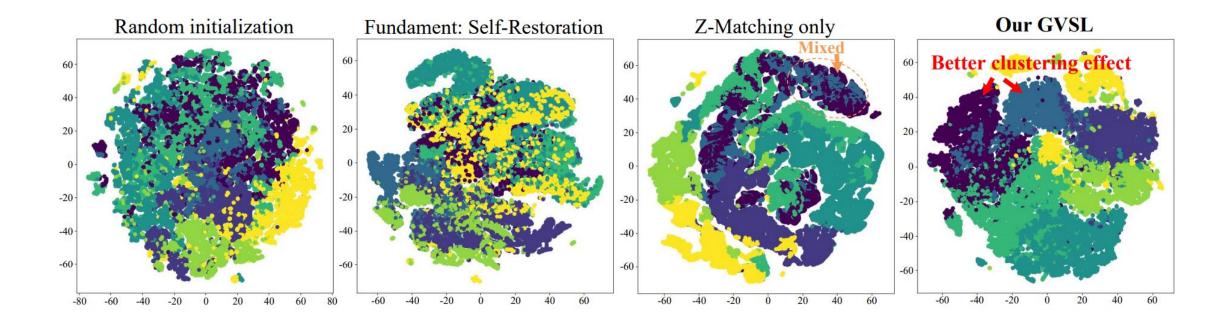
ABLATION STUDY

	-		
	-	T	
14	-	192	
	-	22	
International States		-	


Pre-training	a) Linear: powerful representation				b) Fine-tuning: great transferring			
ric-uaining	$\mathrm{SHC}_{DSC\%}$	$SAC_{DSC\%}$	$\text{CCC}_{AUC\%}$	$SBM_{DSC\%}$	$\mathrm{SHC}_{DSC\%}$	$SAC_{DSC\%}$	$\mathrm{CCC}_{AUC\%}$	$SBM_{DSC\%}$
		Inner scene		Inter scene		Inner scene		Inter scene
Scratch	21.9	10.0	52.7	56.4	87.8	80.4	74.4	89.7
Denosing [40]	$31.4_{(+9.5)}$	$9.3_{(-0.7)}$	$57.9_{(+5.2)}$	$28.3_{(-28.1)}$	$90.3_{(+2.5)}$	80.5 (+0.1)	$75.6_{(+1.2)}$	89.7
In-painting [30]	$32.3_{(+10.4)}$	$5.9_{(-4.1)}$	$57.1_{(+4.4)}$	$25.0_{(-31.4)}$	$90.4_{(+2.6)}$	$80.3_{(-0.1)}$	$79.9_{(+5.5)}$	89.9 _(+0.2)
Models Genesis [48]	$47.4_{(+25.5)}$	$22.5_{(+12.5)}$	$60.4_{(+7.7)}$	$44.9_{(-11.5)}$	$90.3_{(+2.5)}$	$79.9_{(-0.5)}$	$80.7_{(+6.3)}$	89.4 _(-0.3)
Rotation [23]	$56.1_{(+34.2)}$	$21.9_{(+11.9)}$	62.1 _(+9.4)	$54.1_{(-2.3)}$	$90.6_{(+2.8)}$	$81.1_{(+0.7)}$	$77.1_{(+2.7)}$	89.6(-0.1)
DeepCluster [2]	$55.9_{(+34.0)}$	$4.4_{(-5.6)}$	$57.9_{(+5.2)}$	$67.5_{(+11.1)}$	$85.4_{(-2.4)}$	$80.5_{(+0.1)}$	$59.9_{(-14.5)}$	89.1 _(-0.6)
SimSiam [4]	$56.5_{(+34.6)}$	$9.7_{(-0.3)}$	$61.0_{(+8.3)}$	$66.2_{(+9.8)}$	$87.5_{(-0.3)}$	$80.1_{(-0.3)}$	$73.6_{(-0.8)}$	89.8(+0.1)
BYOL [7]	$46.9_{(+25.0)}$	$8.6_{(-1.4)}$	$53.7_{(+1.0)}$	$52.7_{(-3.7)}$	88.6 _(+0.8)	80.7 _(+0.3)	$76.5_{(+2.1)}$	89.5 _(-0.2)
SimCLR [3]	$48.7_{(+26.8)}$	$15.5_{(+5.5)}$	61.3(+8.6)	58.7(+2.3)	86.9 (0.9)	79.9(0.5)	74.3 (0.1)	89.3 (0.4)
w/o Z-Matching	$49.1_{(+27.2)}$	$21.1_{(+11.1)}$	$55.8_{(+3.4)}$	$45.1_{(-11.3)}$	88.3 _(+0.5)	81.2(+0.8)	$81.3_{(+6.9)}$	89.7
w/o Fundament	$45.3_{(+23.4)}$	$0.0_{(-10.0)}$	$58.8_{(+6.4)}$	$48.5_{(-7.9)}$	$87.0_{(-0.8)}$	79.5 (-0.9)	$76.6_{(+2.2)}$	89.0(-0.7)
w/o Affine head	$57.7_{(+35.8)}$	$17.9_{(+7.9)}$	$57.6_{(+4.9)}$	$53.4_{(-3.0)}$	89.4(+1.6)	82.3 (+1.9)	$79.8_{(+5.4)}$	89.8(+0.1)
Our GVSL (Whole)	68.4 (+46.5)	28.7 _(+18.7)	$60.8_{(+8.1)}$	79.9 _(+23.5)	91.2 (+3.4)	81.3 _(+0.9)	82.2 (+7.8)	90.0 (+0.3)

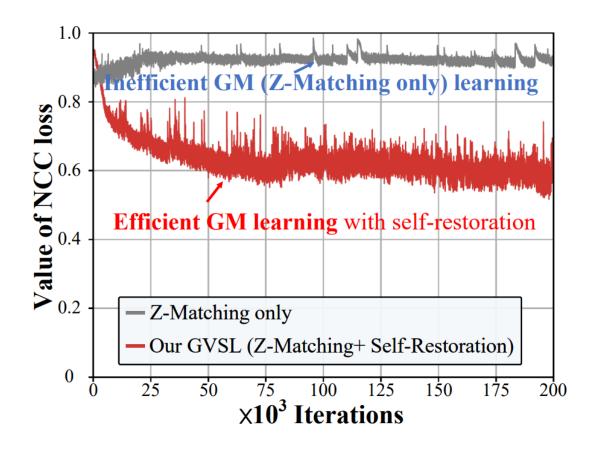
- When only learning the GM (Z-Matching), its initial weak representability makes the pre-trained model have inefficient optimization and brings poor representation
- When adding the fundamental task, our GVSL has better performance than the single two sub-pretext tasks on all four downstream tasks.
- ➤ When removing the Affine head in the Z-Matching head, it reduces 3.2% and 2.4% AUC in the linear and finetuning evaluations of CCC task due to the lack of global representation learning.

ABLATION STUDY



> Our powerful representability and much faster convergence ability.

ABLATION STUDY



Pre-trained models in the SHC task demonstrate our GVSL's promotion for the clustering effect.

ABLATION STUDY

何字霆

The self-restoration learns a basic representation for visual semantic regions, thus driving the learning of inter-image similarity in our GM.

DISCUSSION AND CONCLUSION

- Conclusion of method: Geometric Visual Similarity Learning based on the topological invariance of 3D medical images is a powerful prior for the representation pre-training of inter-image similarity;
- Future work: Expand the learning of inter-image similarity to some images without topological invariance, i.e., whole slide imaging.

DISCUSSION AND CONCLUSION

THANKS, Q&A

He Yutíng (何字霆) Southeast University