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Background:
Medical images v.s. natural images
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Natural images

 Scan from large scopes

 Nonlimited range and pose

 Large inter-image difference

Medical images

 Scan from small scopes

 Limited range and pose

 Large inter-image similarity

Opportunity: Learning inter-image similarity for the clustering of the same semantic regions



Background:
Limitation
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Wang, X., et al. (2021). Dense contrastive learning for self-supervised visual 
pre-training. CVPR (pp. 3024-3033).
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Limitation: unreliable inter-image correspondence
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Motivation:
Topological invariance
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Hypothesis: Keeping the topology of 3D medical images will enhance the correspondence discovery
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Contribution:
Geometric visual similarity learning

 Advances the learning of inter-image similarity in 3D medical image SSP pushing the representability

of pre-trained models;

 Propose the Geometric Visual Similarity Learning (GVSL) that embeds the prior of topological

invariance into the correspondence learning;

 Present a novel SSP head, Z-Matching head, for simultaneously powerful global and local

representation via GVSL.
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Representation Correspondence discovery based on topology Clustering effect



Methodology:
Geometric visual similarity learning
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Methodology:
Geometric visual similarity learning
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Methodology:
Geometric visual similarity learning
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Methodology:
Geometric visual similarity learning
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Methodology:
Geometric visual similarity learning
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Methodology:
Geometric visual similarity learning
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Methodology:
Geometric visual similarity learning
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 Smooth loss on correspondence indexes for 
topological preservation;

 Similarity loss inter-images for correspondence.



Methodology:
Geometric visual similarity learning
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Methodology:
Geometric visual similarity learning
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Methodology (Intuitions):
Geometric visual similarity learning

Topology manifold {xA,xB}
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Methodology:
Z-Matching head

 Affine head: global visual similarity and 

alignment for global representation

 Deformable head: local visual similarity 

and alignment for dense representation

I. Affine head A (·) for global visual similarity

II. Deformable head D(·) for local visual similarity
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Methodology:
Self-restoration for warm-up
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Experiment:
Evaluation tasks
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 Heart structures on CT (SHC)

 Coronary artery on CT (SAC)

 Brain tissues on MR (SBM)

 COVID-19 on CT (CCC)

Pretrain dataset:
302 CCTA images
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Experiment:
Linear and fine-tuning evaluation

 Powerful inner-scene transferring for both large and small structures 



Experiment:
Linear and fine-tuning evaluation

 Effective inter-scene transferring, but is not significant in fine-tuning



Experiment:
Linear and fine-tuning evaluation

 Superiority in global and dense prediction tasks
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Experiment:
Ablation study

 When only learning the GM (Z-Matching), its initial weak representability makes the pre-trained model have 
inefficient optimization and brings poor representation

 When adding the fundamental task, our GVSL has better performance than the single two sub-pretext tasks 
on all four downstream tasks.

 When removing the Affine head in the Z-Matching head, it reduces 3.2% and 2.4% AUC in the linear and fine-
tuning evaluations of CCC task due to the lack of global representation learning.



Experiment:
Ablation study

 Our powerful representability and much faster convergence ability.



Experiment:
Ablation study

 Pre-trained models in the SHC task demonstrate our GVSL’s promotion 
for the clustering effect.



Experiment:
Ablation study

 The self-restoration learns a basic

representation for visual semantic

regions, thus driving the learning

of inter-image similarity in our GM.



Discussion and conclusion

 Conclusion of method: Geometric Visual Similarity Learning based on the

topological invariance of 3D medical images is a powerful prior for the

representation pre-training of inter-image similarity;

 Future work: Expand the learning of inter-image similarity to some images

without topological invariance, i.e., whole slide imaging.
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