

ActMAD: Activation Matching to Align Distributions for Test-Time Training

CVPR 2023

THU-PM-339

Muhammad Jehanzeb Mirza^{1,2}, Pol Jane Soneria³, Wei Lin¹, Mateusz Kozinski¹, Horst Possegger¹, Horst Bischof^{1,2}

¹ Institute for Computer Graphics and Vision (ICG), Graz University of Technology.

² Christian Doppler Laboratory for Embedded Machine Learning.

³ Karlsruhe Institute for Technology (KIT), Germany.

Motivation

Test-Time-Training [1]

[1] Sun et al. "Test-time training with self-supervision for generalization under distribution shifts." ICML, 2020.

Overview

Online adaptation of the parameter vector θ to test data by backpropagation

Location Aware Feature Alignment

Results - Image Classification

(Corruptions:	Gauss	Shot	Impul	Defcs	Gls	Mtn	Zm	Snw	Frst	Fg	Brt	Cnt	Els	Px	Jpg	Mean
Source		98.4	97.7	98.4	90.6	92.5	89.8	81.8	89.5	85.0	86.3	51.1	97.2	85.3	76.9	71.7	86.2
SHOT [†] ((Offline)	73.8	70.5	72.2	79.2	80.6	58.5	54.0	53.6	63.0	47.3	39.2	97.7	48.7	46.1	53.0	62.5
TTT [†]		96.9	95.5	96.5	89.9	93.2	86.5	81.5	82.9	82.1	80.0	53.0	85.6	79.1	77.2	74.7	83.6
DUA*		89.4	87.6	88.1	88.0	88.6	84.7	74.3	77.8	78.4	68.6	45.6	95.9	72.2	66.5	67.4	78.2
NORM*		87.1	90.6	89.5	87.6	93.4	80.0	71.9	70.6	81.5	65.9	46.8	89.8	73.5	63.2	67.5	77.3
T3A*		85.5	84.0	85.0	86.6	85.9	76.1	65.4	70.3	71.0	58.7	41.3	86.8	60.5	54.4	61.0	71.5
SHOT [†] ((Online)	83.9	82.3	83.7	83.9	83.8	72.6	61.9	65.7	68.6	54.8	39.4	85.9	58.1	53.1	62.3	69.3
P-L*		82.0	79.7	81.5	84.2	83.0	71.0	60.7	65.4	68.6	52.9	41.7	82.6	55.5	51.1	55.7	67.7
TENT*		80.8	78.6	80.4	82.5	82.5	72.1	60.5	63.7	66.7	52.1	39.2	84.2	55.5	50.8	58.2	67.2
CFA^{\dagger}		78.2	76.4	78.2	81.9	80.4	69.6	60.1	63.4	67.6	52.0	41.5	79.5	54.3	50.2	55.1	65.9
ActMAI	\mathbf{O}^{\dagger}	76.3	77.4	77.4	76.1	75.4	72.0	62.8	66.6	65.8	55.8	40.9	78.8	55.7	51.4	57.6	66.0

Top-1 Classification Error (%) for all corruptions in ImageNet-C (level 5). Lower is better. All results are for a ResNet-18 network pre-trained on the clean train set. Source denotes its performance on the corrupted test data without any adaptation.

Results - Object Detection

(a) KITTI-Clear \rightarrow KITTI-Fog													
12	car	van	truck	ped	sit	сус	tram	misc	Mean				
Source	31.3	15.0	6.0	34.8	33.6	20.2	6.7	9.1	19.6				
TTT^{\dagger}	42.6	19.5	10.5	49.7	51.4	31.0	10.5	20.2	29.4				
DUA*	51.4	13.5	9.1	48.1	57.3	36.3	14.5	18.0	31.0				
NORM*	50.1	27.6	12.6	47.6	50.0	30.9	17.7	21.7	32.3				
ActMAD [†]	67.0	41.2	25.5	62.2	68.7	50.9	30.5	35.7	47.7				
		(b) K	UTTI-C	Clear –	→ KIT	ГІ-Rai	n						
Source	86.4	69.6	58.6	68.6	63.7	60.2	64.5	60.4	66.5				
TTT^{\dagger}	86.4	76.1	68.0	68.7	66.6	66.3	75.0	65.2	71.5				
DUA*	88.3	70.4	70.4	70.8	67.7	66.8	73.5	67.5	71.9				
NORM*	88.3	77.0	65.7	69.1	61.5	66.7	69.1	67.1	70.6				
ActMAD [†]	94.2	89.2	87.3	74.1	65.6	77.9	82.5	80.1	81.4				
		(c) K	ITTI-C	lear —	KITT	I-Snov	w						
Source	54.8	27.8	31.7	35.7	1.3	15.7	18.2	13.3	24.8				
TTT^{\dagger}	77.2	53.2	60.6	48.4	29.7	37.1	43.2	31.1	47.5				
DUA*	64.6	38.9	49.3	44.0	20.8	22.8	27.8	25.4	36.7				
NORM*	75.5	51.0	51.7	46.8	21.7	34.9	43.4	34.3	44.9				

Mean Average Precision (mAP@50) for a KITTI pre-trained YOLOv3 tested on rain, fog and snow datasets. Higher is better. a) Results for the most severe fog level, i.e. only 30m visibility. b) Results for the most severe rain level, i.e. 200 mm/hr rain intensity. c) Results for snow. Best mAP is shown in bold, while the second best is underlined.

64.5

ActMAD[†] 89.5 78.0 82.6 57.8 38.0 53.4 58.8 58.1

Online adaptation for each individual weather condition and comparison with baselines. We again report the Mean Average Precision (mAP@50) averaged over all the 8 classes in the KITTI dataset.

(* - Fully Test-Time Approaches, † - Approaches requiring some supervision from the training data)

Goal: Driving Continuously in Bad Weather

Adaptation in Stationary Scenarios

Ablation on Design Choices

				CIFAR	-10C	KITTI-FOG		
				% Error \downarrow	Change	mAP@50↑	Change	
Source (no ada	aptation)	18.3		19.6				
Full ActMAD				10.4	0	47.7	0	
Replace	multi-layer alignment	by	last layer alignment	12.3	+1.9	36.0	-11.7	
Replace	pixel statistics	by	channel averaged statistics	11.5	+1.1	38.6	- 9.1	
Replace	mean and variance alignment	by	central moment difference	10.5	+0.1	41.2	- 6.5	
Replace	full parameter update	by	only affine parameter update	10.6	+0.2	45.2	- 2.5	

Ablation study on design choices of ActMAD. We use a Wide-ResNet-40-2 for CIFAR-10C, and report the mean performance over 10 experiments for each of the 15 corruptions. We use YOLOv3 for the KITTI-FOG experiment.

Order Does Not Matter

Object Detection - STF - YOLOv3

(a) STF	-Clear -	\rightarrow STF-	Fog	(b) STF-Clear \rightarrow STF-Snow								
	car pe	ed cyc	Mean		car	ped	cyc	Mean				
Source	70.2 67	.5 49.5	62.4	Source	70.3	76.0	44.1	63.5				
TTT	72.5 69	0.8 53.4	65.2	TTT	<u>71.1</u>	76.3	46.6	64.7				
DUA	70.4 67	7.7 50.6	62.9	DUA	70.2	75.9	43.9	63.3				
NORM	70.5 67	4 50.1	62.7	NORM	70.8	7 <mark>6.</mark> 0	44.1	63.6				
ActMAD	79.0 76	6.5 60.1	71.9	ActMAD	72.8	79.4	52.0	68.1				

Object Detection - CityScapes - Faster-RCNN

 $CityScapes \rightarrow FoggyCityScapes$

	persn	ridr	car	trck	bus	train	mcyc	bicyc	Mean
Source	29.3	34.1	35.8	15.4	26.0	9.1	22.4	29.7	25.2
TTT	30.1	36.3	36.7	19.5	29.0	13.5	27.9	<u>37.0</u>	28.8
DUA	31.2	37.0	36.9	20.4	27.3	15.5	29.3	35.5	29.1
MemCLR	32.1	<u>41.4</u>	43.5	21.4	<u>33.1</u>	11.5	25.5	32.9	<u>30.2</u>
ActMAD	36.5	42.7	47.1	28.2	35.4	23.3	28.2	38.3	35.0

Order of Weather Does Not Matter

Object Classification Results - CIFAR100

corruption:	gauss	shot	impul	defcs	gls	mtn	zm	snw	frst	fg	brt	cnt	els	px	jpg	Mean
Source	65.7	60.1	59.1	32.0	51.0	33.6	32.4	41.4	45.2	51.4	<u>31.6</u>	55.5	40.3	59.7	42.4	46.7
SHOT (Offline)	37.2	36.2	36.7	27.5	38.2	28.5	27.8	31.8	32.0	33.4	25.8	29.6	34.5	29.8	37.2	32.4
TTT++ (Offline)	40.7	36.4	41.5	27.5	47.8	31.1	25.1	36.5	34.7	33.7	23.3	24.7	40.2	30.5	33.3	33.8
DUA	42.2	<u>40.9</u>	41.0	30.5	44.8	32.2	29.9	38.9	37.2	43.6	29.5	39.2	39.0	35.3	41.2	37.7
NORM	42.5	41.8	42.6	29.7	43.9	30.6	29.7	35.7	34.6	42.2	26.9	32.8	38.1	35.5	40.9	36.5
T3A	42.4	41.8	42.5	29.7	44.3	30.5	29.5	35.9	34.5	42.1	26.8	32.8	38.0	35.9	40.7	36.5
P-L	41.3	40.5	42.5	29.6	43.1	30.3	29.4	35.8	34.3	41.7	26.7	32.4	37.8	33.5	40.8	36.0
TTT++	43.9	40.0	56.3	32.5	54.2	35.9	29.9	42.2	39.4	39.7	27.5	29.6	44.2	37.0	37.4	39.3
CFA	40.4	39.3	42.1	29.4	42.3	30.2	29.2	35.1	34.1	39.8	26.7	32.1	37.6	32.8	40.6	35.5
SHOT (Online)	39.7	38.9	42.1	29.0	41.9	30.2	29.3	34.8	34.2	39.7	26.7	32.2	37.2	32.5	40.4	35.3
TENT	39.9	39.1	42.2	29.0	42.0	30.2	29.3	34.9	34.2	39.7	26.7	32.3	37.4	32.4	40.4	35.3
EATA	39.1	38.5	41.2	28.9	41.8	<u>29.2</u>	29.1	34.0	33.8	39.1	26.6	31.9	36.6	32.1	40.1	34.8
ActMAD	39.6	38.4	39.5	29.1	41.5	30.0	29.1	34.0	33.2	40.2	26.4	31.5	36.4	31.4	38.9	34.6 ± 0.1
ActMAD+TENT	38.0	<u>37.1</u>	37.9	28.1	39.8	29.2	28.0	32.5	32.3	34.8	26.4	29.6	35.5	30.0	37.6	33.1 ± 0.3
ActMAD+EATA	37.5	36.8	37.1	27.3	39.1	29.1	27.9	31.9	32.7	33.9	25.9	29.3	35.4	29.7	37.5	32.7 ± 0.5

Object Classification Results - ImageNet

corruption:	gauss	shot	impul	defcs	gls	mtn	zm	snw	frst	fg	brt	cnt	els	px	jpg	Mean
Source	98.4	97.7	98.4	90.6	92.5	89.8	81.8	89.5	85.0	86.3	51.1	97.2	85.3	76.9	71.7	86.2
SHOT (Offline)	73.8	70.5	72.2	79.2	80.6	58.5	54.0	53.6	63.0	47.3	39.2	97.7	48.7	46.1	53.0	62.5
TTT	96.9	95.5	96.5	89.9	93.2	86.5	81.5	82.9	82.1	80.0	53.0	85.6	79.1	77.2	74.7	83.6
DUA	89.4	87.6	88.1	88.0	88.6	84.7	74.3	77.8	78.4	68.6	45.6	95.9	72.2	66.5	67.4	78.2
NORM	87.1	90.6	89.5	87.6	93.4	80.0	71.9	70.6	81.5	65.9	46.8	89.8	73.5	63.2	67.5	77.3
T3A	85.5	84.0	85.0	86.6	85.9	76.1	65.4	70.3	71.0	58.7	41.3	86.8	60.5	54.4	61.0	71.5
SHOT (Online)	82.0	79.3	81.8	85.3	83.7	72.9	63.3	66.8	70.9	55.9	46.1	81.6	57.4	54.3	58.6	69.3
P-L	82.0	79.7	81.5	84.2	83.0	71.0	60.7	65.4	68.6	52.9	41.7	82.6	55.5	51.1	55.7	67.7
CFA	78.2	76.4	78.2	81.9	80.4	69.6	60.1	63.4	67.6	52.0	41.5	79.5	54.3	50.2	55.1	65.9
TENT	80.8	78.6	80.4	82.5	82.5	72.1	60.5	63.7	66.7	52.1	39.2	84.2	55.5	50.8	58.2	67.2
EATA	75.0	73.3	75.2	77.6	77.0	65.8	57.8	61.0	65.1	50.7	41.5	70.8	52.7	49.4	54.1	63.1
ActMAD	76.3	77.4	77.4	76.1	75.4	72.0	62.8	66.6	65.8	55.8	40.9	78.8	55.7	51.4	57.6	66.0 ± 0.1
ActMAD+TENT	74.1	71.6	74.2	77.9	75.9	63.9	55.0	58.3	64.4	47.7	39.1	81.3	49.2	46.0	50.9	$\underline{62.0}\pm0.5$
ActMAD+EATA	70.7	69.2	72.3	75.9	74.4	60.8	53.4	55.5	60.2	46.4	38.5	78.4	48.0	45.2	49.5	$\textbf{59.9} \pm 0.8$