

MAKE THE WORLD MORE CREDIBLE

Progressive Open Space Expansion for Open-Set Model Attribution

Tianyun Yang, Danding Wang*, Fan Tang, Xinying Zhao, Juan Cao, Sheng Tang

Media Synthesis and Forensics Lab, Institute of Computing Technology, CAS

University of Chinese Academy of Sciences

Tag: WED-PM-334

Problem

• Model Attribution: Identify the source model of generated contents.

1 Protrit of Edmond Belamy, 2018, created by GAN (Generative Adversarial Network).

2 An Al-Generated Picture Won an Art Prize.

3 Raphael S. (2019, Jul 14). Experts: A spy reportedly used an AI-picture to connect with sources on LinkedIn.

Open-Set Model Attribution

• Attribute images to known models and identify those from unknown ones.

Our work: Open-set model attribution

Existing Works on OSR

Discriminative-Based

Drawback: The performance depends heavily on the closed-set classifier.

Existing Works on OSR

Drawback: The performance depends heavily on the closed-set classifier Drawback: Fingerprint reconstruction error is too subtle to be thresholded

Existing Works on OSR

POSE (<u>Progressive</u> <u>Open</u> <u>Space</u> <u>Expansion</u>)

POSE (<u>Progressive</u> <u>Open</u> <u>Space</u> <u>Expansion</u>)

POSE (<u>Progressive</u> <u>Open</u> <u>Space</u> <u>Expansion</u>)

• **Key Idea:** Progressively simulate the potential open space of unknown models via a set of lightweight augmentation models. Train feature extractor and

• **Key Idea:** Progressively simulate the potential open space of unknown models via a set of lightweight augmentation models. Train feature extractor and

Dataset

- Four groups of data: Seen Real, Seen Fake, Unseen Real, and three type of Unseen Fake
 - Unseen fake include Unseen Seed, Unseen Architecture, and Unseen Dataset

Seer	n Real	CelebA	Face-HQ	ImageNet	Youtube	LSUN-Bedroom	LSUN-Cat	LSUN-Bus	
Seen Fake		StarGAN [10], ProGAN_seed0 [22]	StyleGAN3-r [23], StyleGAN3-t	SAGAN [56], SNGAN	FSGAN [37], FaceSwap [1]	ProGAN_seed0, MMDGAN	StyleGAN, StyleGAN3	ProGAN, StyleGAN	
Unseen Un Fake An Un Un Da	Unseen Seed	ProGAN (seed1,2,3,4,5)	-	-	-	ProGAN (seed1,2,3,4,5)	-	-	
	Unseen Architec- ture	SNGAN [34], AttGAN [19], MMDGAN [3], InfoMaxGAN [28]	StyleGAN2 [25], ProGAN, StyleGAN [24]	S3GAN [32], BigGAN [4], ContraGAN [21]	Wav2Lip [40], FaceShifter [29]	SNGAN, InfoMaxGAN	SNGAN, ProGAN, MMDGAN, StyleGAN2	SNGAN, MMDGAN, StyleGAN2, StyleGAN3	
	Unseen Dataset	ProGAN, StyleGAN, StyleGAN3 (Cow, Sheep, Classroom, Bridge, Kitchen, Airplane, Church)							
Unseen Real		Coco, Summer							

Dataset

- Four groups of data: Seen Real, Seen Fake, Unseen Real, and three type of Unseen Fake
 - Unseen fake include Unseen Seed, Unseen Architecture, and Unseen Dataset

Seen Real		CelebA	Face-HQ	ImageNet	Youtube	LSUN-Bedroom	LSUN-Cat	LSUN-Bus		
Seen Fake		StarGAN [10], ProGAN_seed0 [22]	StyleGAN3-r [23] StyleGAN3-t	, SAGAN [56], SNGAN	FSGAN [37], FaceSwap [1]	ProGAN_seed0, MMDGAN	StyleGAN, StyleGAN3	ProGAN, StyleGAN		
	Unseen Seed	ProGAN (seed1,2,3,4,5)	-	-	-	ProGAN (seed1,2,3,4,5)	-	-		
Unseen Fake	Unseen Architec- ture	SNGAN [34], AttGAN [19], MMDGAN [3], InfoMaxGAN [28]	StyleGAN2 [25], ProGAN, StyleGAN [24]	S3GAN [32], BigGAN [4], ContraGAN [21]	Wav2Lip [40], FaceShifter [29]	SNGAN, InfoMaxGAN	SNGAN, ProGAN, MMDGAN, StyleGAN2	SNGAN, MMDGAN, StyleGAN2, StyleGAN3		
	Unseen Dataset	ProGAN, StyleGAN, StyleGAN3 (Cow, Sheep, Classroom, Bridge, Kitchen, Airplane, Church)								
Unsee	en Real			Coco	o, Summer					
Seen Fake			X →							
		Different Training Seed Diffe	erent Arch. Differ	ent Training						
Unseen Fake										
Unsee	en Fake									

Dataset

- Four groups of data: Seen Real, Seen Fake, Unseen Real, and three type of Unseen Fake
 - Unseen fake include Unseen Seed, Unseen Architecture, and Unseen Dataset

Experimental Setup

Compared Methods

- GAN attribution: PRNU [1], Yu et al. [2], DCT CNN [3], DNA-Det [4], and RepMix [5]
- GAN discovery: Girish et al. [6]
- Open-set recognition: OpenMax [7], PROSER [8], ARPL+CS [9], and DIAS [10]

- [1] Do gans leave artificial fingerprints? In *MIPR*, 2019
- [2] Attributing fake images to gans: Learning and analyzing gan fingerprints. In ICCV, 2019.
- [3] Leveraging frequency analysis for deep fake image recognition. In ICML, 2020.
- [4] Deepfake network architecture attribution. In AAAI, 2022.
- [5] Repmix: Representation mixing for robust attribution of synthesized images. In ECCV, 2022.
- [6] Towards discovery and attribution of open-world gan generated images. In ICCV, 2021
- [7] Towards open set deep networks. In CVPR, 2016.
- [8] Learning placeholders for open-set recognition. In CVPR, 2021.
- [9] Adversarial reciprocal points learning for open set recognition. In TPAMI, 2021
- [10] Difficulty-aware simulator for open set recognition. In ECCV, 2022

Experimental Setup

Compared Methods

- GAN attribution: PRNU [1], Yu et al. [2], DCT CNN [3], DNA-Det [4], and RepMix [5]
- GAN discovery: Girish *et al*. [6]
- Open-set recognition: OpenMax [7], PROSER [8], ARPL+CS [9], and DIAS [10]

Testing

- Test image \rightarrow Feature extractor F \rightarrow Classification head H \rightarrow Softmax \rightarrow Confidence scores
 - If the max confidence score is larger than a threshold \rightarrow Known category of the index
 - Otherwise → Unknown

- [1] Do gans leave artificial fingerprints? In *MIPR*, 2019
- [2] Attributing fake images to gans: Learning and analyzing gan fingerprints. In ICCV, 2019.
- [3] Leveraging frequency analysis for deep fake image recognition. In ICML, 2020.
- [4] Deepfake network architecture attribution. In AAAI, 2022.
- [5] Repmix: Representation mixing for robust attribution of synthesized images. In ECCV, 2022.
- [6] Towards discovery and attribution of open-world gan generated images. In ICCV, 2021
- [7] Towards open set deep networks. In CVPR, 2016.
- [8] Learning placeholders for open-set recognition. In CVPR, 2021.
- [9] Adversarial reciprocal points learning for open set recognition. In TPAMI, 2021
- [10] Difficulty-aware simulator for open set recognition. In ECCV, 2022

Experimental Setup

Compared Methods

- GAN attribution: PRNU [1], Yu et al. [2], DCT CNN [3], DNA-Det [4], and RepMix [5]
- GAN discovery: Girish *et al*. [6]
- Open-set recognition: OpenMax [7], PROSER [8], ARPL+CS [9], and DIAS [10]

Testing

- Test image \rightarrow Feature extractor F \rightarrow Classification head H \rightarrow Softmax \rightarrow Confidence scores
 - If the max confidence score is larger than a threshold \rightarrow Known category of the index
 - Otherwise → Unknown

Evaluation

- Accuracy: closed-set classification
- AUC: closed/open discrimination
- OSCR: trade-off between the two aspects

- [1] Do gans leave artificial fingerprints? In MIPR, 2019
- [2] Attributing fake images to gans: Learning and analyzing gan fingerprints. In *ICCV*, 2019.
- [3] Leveraging frequency analysis for deep fake image recognition. In ICML, 2020.
- [4] Deepfake network architecture attribution. In AAAI, 2022.
- [5] Repmix: Representation mixing for robust attribution of synthesized images. In ECCV, 2022.
- [6] Towards discovery and attribution of open-world gan generated images. In ICCV, 2021
- [7] Towards open set deep networks. In CVPR, 2016.
- [8] Learning placeholders for open-set recognition. In CVPR, 2021.
- [9] Adversarial reciprocal points learning for open set recognition. In TPAMI, 2021
- [10] Difficulty-aware simulator for open set recognition. In ECCV, 2022

Experimental Result

Compare with GAN attribution methods

POSE outperforms existing fake image attribution methods in terms of closedset classification and closed/open discrimination.

Method	Closed-Set	Unsee	Unseen Seed Unse		Unseen Architecture		Unseen Dataset		Unseen All	
Method	Accuracy	AUC	OSCR	AUC	OSCR	AUC	OSCR	AUC	OSCR	
PRNU [33]	55.27	69.20	49.16	70.02	49.49	67.68	48.57	68.94	49.06	
Yu <i>et al</i> . [53]	85.71	53.14	50.99	69.04	64.17	<u>78.79</u>	72.20	69.90	64.86	
DCT-CNN [14]	86.16	55.46	52.68	72.56	67.43	72.87	67.57	69.46	64.70	
DNA-Det [50]	93.56	61.46	<u>59.34</u>	<u>80.93</u>	76.45	66.14	63.27	71.40	68.00	
RepMix [5]	<u>93.69</u>	54.70	53.26	72.86	70.49	78.69	<u>76.02</u>	<u>71.74</u>	<u>69.43</u>	
POSE	94.81	68.15	67.25	84.17	81.62	88.24	85.64	82.76	80.50	

Compare with OSR methods

The simulated open space by POSE is more suitable for OSMA than off-theshelf OSR methods.

Method	Closed-Set	Unseen Seed		Unseen Architecture		Unseen Dataset		Unseen All	
memou	Accuracy	AUC	OSCR	AUC	OSCR	AUC	OSCR	AUC	OSCR
Base	90.68	62.02	60.58	76.03	72.92	77.01	73.88	73.78	70.97
Base+OpenMax [2]	91.11	63.27	61.60	76.40	73.29	75.33	72.32	73.50	70.70
Base+PROSER [58]	92.12	63.32	62.19	79.55	76.57	81.43	78.64	77.22	74.66
Base+ARPL+CS [7]	91.77	54.94	54.17	79.09	75.97	80.48	77.52	75.08	72.47
Base+DIAS [35]	92.77	62.15	61.02	79.34	76.49	84.14	81.13	78.00	75.41
Base+AM Base+AM+ $\mathcal{L}_{div}(\mathbf{POSE})$	<u>93.41</u> 94.81	<u>66.17</u> 68.15	<u>65.04</u> 67.25	<u>82.21</u> 84.17	79.42 81.62	85.04 88.24	<u>82.20</u> 85.64	<u>80.31</u> 82.76	<u>77.80</u> 80.50

Compare with GAN discovery method

POSE is better in unknown model clustering.

Method	Avg. Purity	NMI	ARI
Girish <i>et al</i> . [16] (k=49)	32.89	61.89	21.05
POSE (k=49)	39.16	61.91	27.48
POSE (k=68)	41.04	60.59	26.39

k = 68: the true number of classes for seen and unseen data

k = 49: the number of clusters that Girish *et al.* returns after four iterations.

• The diversity loss increase the diversity of open space simulated by different augmentation models, and reduces the open space risk better.

	Closed-set	Оре	en-set
	Acc	AUC	OSCR
Base	90.68	73.78	70.97
Base+AM	93.41	80.31	77.80
Base+AM+Ldiv	94.81	82.76	80.50

• The diversity loss increase the diversity of open space simulated by different augmentation models, and reduces the open space risk better.

	Closed-set	Оре	en-set
	Acc	AUC	OSCR
Base	90.68	73.78	70.97
Base+AM	93.41	80.31	77.80
Base+AM+Ldiv	94.81	82.76	80.50

With L_{div} the AUC increases continually until about 19 epochs.

• The diversity loss increase the diversity of open space simulated by different augmentation models, and reduces the open space risk better.

	Closed-set	Оре	en-set
	Acc	AUC	OSCR
Base	90.68	73.78	70.97
Base+AM	93.41	80.31	77.80
Base+AM+Ldiv	94.81	82.76	80.50

With L_{div} , the AUC increases continually until about 19 epochs.

- Ablation study on the architecture of augmentation models.
 - Best option: only convolution layer, Layer number = 2, Kernel size = 3

Visualization Examples

• The augmented data simulates a rich open space enclosing the known data points, resulting in a clear better close/open discrimination.

▲ Known Class Data ● Augmented Data for the Known Class ● Unknown Class Data (Easiest to be confused)

Summary

- Highlights
 - Problem: A new task named open-set model attribution.
 - > Method: Simulate the potential open space progressively via lightweight augmentation models.
 - > Dataset: A dataset considering Seen Real, Seen Fake, Unseen Real, and three types of Unseen Fake.
 - **Evaluation:** Superior than model attribution methods and off-the-shelf OSR methods.
 - Code, dataset, and models are at <u>https://github.com/ICTMCG/POSE</u>
- Future Work
 - > Unified framework for architecture-level and model-level attribution.
 - > Model retrieval, model lineage analysis.

Thanks

Feel free to contact : yangtianyun19z@ict.ac.cn wangdanding@ict.ac.cn