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• Task: learn a diffusion model over 3D shapes.
Given some condition c, generate the
corresponding 3D shape X

• 3D shape: voxelized SDF

• Input: partial shape, image, text, or any subset 
of their union

• Output: 3D shape

Overview
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• Why SDF?
• Compared to point cloud: do not have surfaces information
• Compared to mesh: cannot easily adopt many existing techniques from 2D images
• Compared to volume: memory consumption for volume rendering is high

• Why Diffusion Model?
• Compare to autoregressive model: more difficult to scale (memory usage v.s. sequence length)
• Compare to GANs: training is more stable and easier to converge, GANs are known to have 

mode-collapsing
• Great success in 2D image synthesis

• Classifier-free guidance: provides flexible controls for the conditional generation (non-trivial to 
do for others such as GANs)

Motivation
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Method
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● Problem formulation: learn a diffusion model over 3D shape – SDF,                            (D=64 or 128)

● Challenge: 3D data is complex and high-dimensional – computationally intractable to train on raw 
data

● Solution: compressed the 3D shape with VQ-VAE, then train a diffusion model in the latent space



• First stage: learn the 3D shape compression with VQ-VAE

Method - Shape Compression via VQ-VAE
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• Second stage: train latent diffusion model for SDF

Method - Latent Diffusion Model for SDF
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• Adopt task specific encoders for different modalities

• Cross-attention and classifier-free guidance [1]

Method - Conditional Generation
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[1] Ho et al. Classifier-Free Diffusion Guidance, 2022.
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• Adopt task specific encoders for different modalities

• Cross-attention and classifier-free guidance [1]

Method - Multi-modality Conditioning
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[1] Ho et al. Classifier-Free Diffusion Guidance, 2022.
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Method – Overview
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• Inspired by DreamFusion [1], given a text, we can add textures for the generated SDF with NeRF and 

a 2D diffusion model

Method - Text-guided Texturing
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Laplace’s CDF:

[1] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv:2209.14988, 2022

[2] Lior Yariv, Jiatao Gu, Yoni Kasten, Yaron Lipman. Volume Rendering of Neural Implicit Surfaces. In NeurIPS 2021.
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● Evaluate on five tasks:
○ Shape completion
○ Single-view reconstruction
○ Text-guided generation
○ Multi-modality condition generation
○ Text-guided texturing

● Datasets
○ Shape: ShapeNet, BuildingNet
○ Image-Shape: ShapeNet Rendering, Pix3D
○ Text-Shape: text2shape

Experiments
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● Input: partial shape

● Output: complete shape

● Dataset: ShapeNet & BuildingNet

Results: Shape Completion
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● Input: image

● Output: 3D shape

● Dataset: Pix3D

Results: Single-view Reconstruction
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Results: Single-view Reconstruction
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● Input: text

● Dataset: text2shape (ShapeNet Chair & Table)

● Output: 3D shape

[3] Chen et al. Text2Shape: Generating Shapes from Natural Language by Learning Joint Embeddings, 2018



Results: Condition-guided Shape Completion
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● Input: partial shape + [ image or text ]

● Output: 3D shape



Results: Multi-modality Conditional Generation
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● Input: partial shape + image + text ● Output: 3D shape



Results: Text-guided Texturing
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● Input: 3D shape + text
● Output: 3D shape with textures



Summary
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● We propose SDFusion – a diffusion based 3D shape generative model

● We adopt cross-attention for modulating the conditional signal

● By leveraging classifier-free guidance, SDFusion enables controllability for multi-modality conditional 
generation

● Using NeRF and an off-the-shelf 2D diffusion model, we can add textures onto the generated 3D shape 
(inspired from DreamFusion)
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