

Problem Definition and Contribution

Goal

Presenting a novel large-scale dataset for Ultra-High Resolution (UHR) segmentation, namely URUR (Ultra-High Resolution dataset with Ultra-Rich Context), and a more efficient and effective framework, namely WSDNet.

Motivation

- A large-scale dataset covering a wide range of scenes with full fine-grained dense annotations is urgently needed to facilitate the field of UHR segmentation.
- Proposing a more efficient framework to effectively balance the memory occupation and accuracy when the image resolution grows to ultra-high

Key Contributions

- URUR dataset: a novel large-scale dataset covering a wide range of scenes with full fine-grained dense annotations, which is superior to all the exiting UHR datasets.
- WSDNet is proposed to preserve more spatial details with multi-level DWT-IWT, and a Wavelet Smooth Loss is presented to reconstruct original structured context and texture distribution with the smooth con- strain in frequency domain.
- Statistics and experiments demonstrate the superiority of URUR and WSDNet. WSDNet achieves state-of-the-art balance among accuracy, memory and inference speed on several UHR datasets.

Ultra-High Resolution Segmentation with Ultra-Rich Context: A Novel Benchmark Deyi Ji, Feng Zhao, Hongtao Lu, Mingyuan Tao, Jieping Ye

Main Idea

- details.
- Transform and then fed into the deep network to harvest high-level category-wise context.
- branch. Thus heavy feature fusion modules can be removed for higher inference speed.
- texture distribution with the smooth constrain in frequency domain.

• Shallow Branch (upper): the input image is decomposed into two subbands with Laplacian pyramid, which are then concatenated and fed into a shallow network to extract full-scale spatial

• Deep Branch (lower): the input image is down-sampled with two-level Discrete Wavelet

• Multi-level Discrete Wavelet Transform (DWT) and Inverse Discrete Wavelet Transform are naturally integrated to release computation burden while preserve more spatial details in the deep

• The Wavelet Smooth Loss (WSL) is also de- signed to reconstruct original structured context and

Results

Visualization of URUR Dataset

Generic Models	mIoU	Acc	Mem	FPS
	(%)↑	(%)↑	(M)↓	\uparrow
PSPNet [39]	32.0	-	5482	1.86
DeepLabv3+ [2]	33.1	-	5508	1.97
STDC [11]	42.0	-	7617	4.31
UHR Models				
GLNet [3]	41.2	71.5	3063	0.04
FCtL [21]	43.1	73.8	4508	0.03
ISDNet [14]	45.8	75.6	4920	6.31
WSDNet	46.9	76.8	4560	7.13