

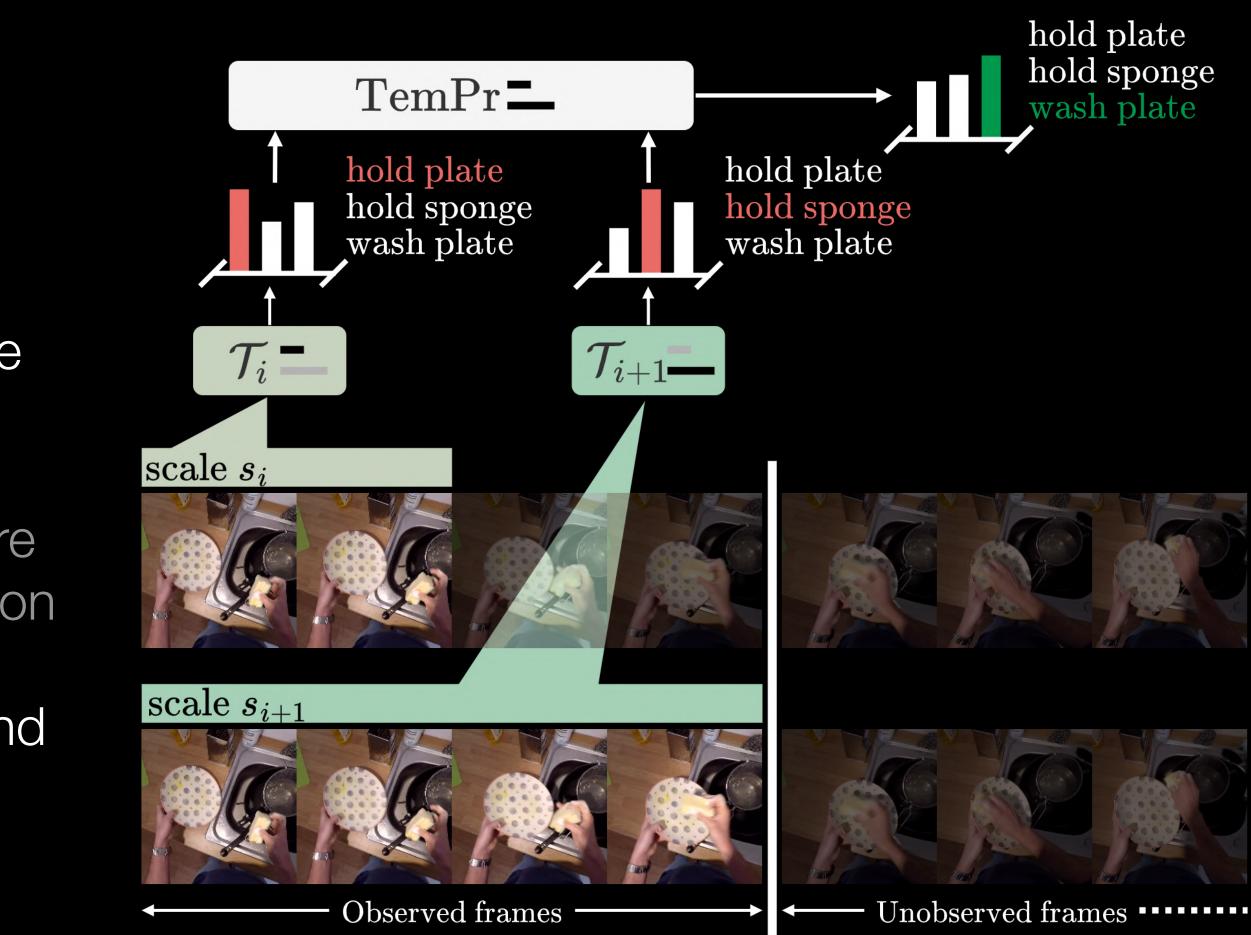
The Wisdom of Crowds: Temporal Progressive **Attention for Early Action Prediction**

 $1,2,\dagger$ **Alexandros Stergiou**

Dima Damen

Session: WED-PM-225

[†] work done whilst at the University of Bristol



Early action recognition infers labels for partial observations of actions .

- We use a progressive fine-to-coarse temporal sampling strategy. Through this we define multiple scales over the observable part of a video.

- At each scale we use attention towers to capture discriminative representations and predict an action label. Predictions from each scale are combined adaptively based on both predictor confidence and similarity.

- We evaluate our method on UCF-101, EK-100, NTU-RGB, SSsub21, and SSv2.

Actions are not always observed in full

source: "Roger Federer Serve Analysis by Patrick Mouratoglou", YouTube

Dealing with predictions – human cognition

Humans are quite good at making educated guesses.

Observed Action

Focus on kinematic information

We understand actions in a predictive and not reactive manner.

Motor Memory

When I previously did this action the goal was...

"drinking"

Prediction of ongoing actions

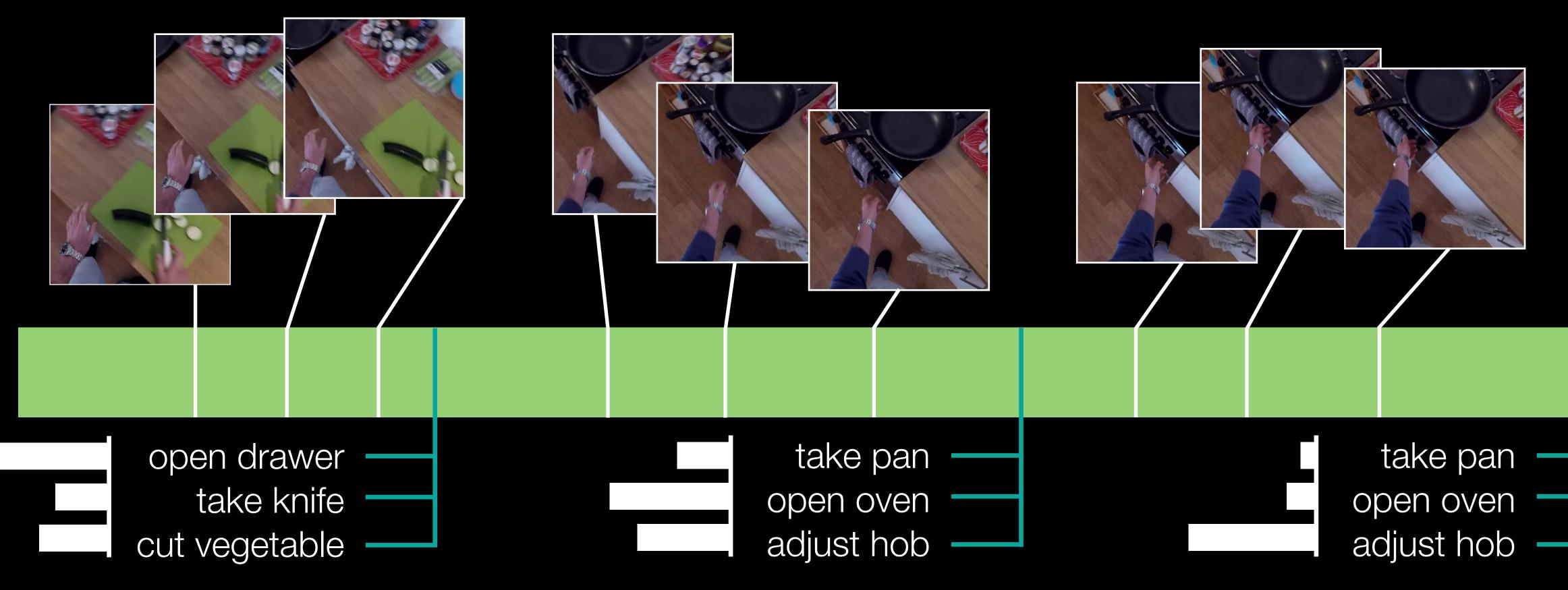
- Handshake

- Dance
- Sit

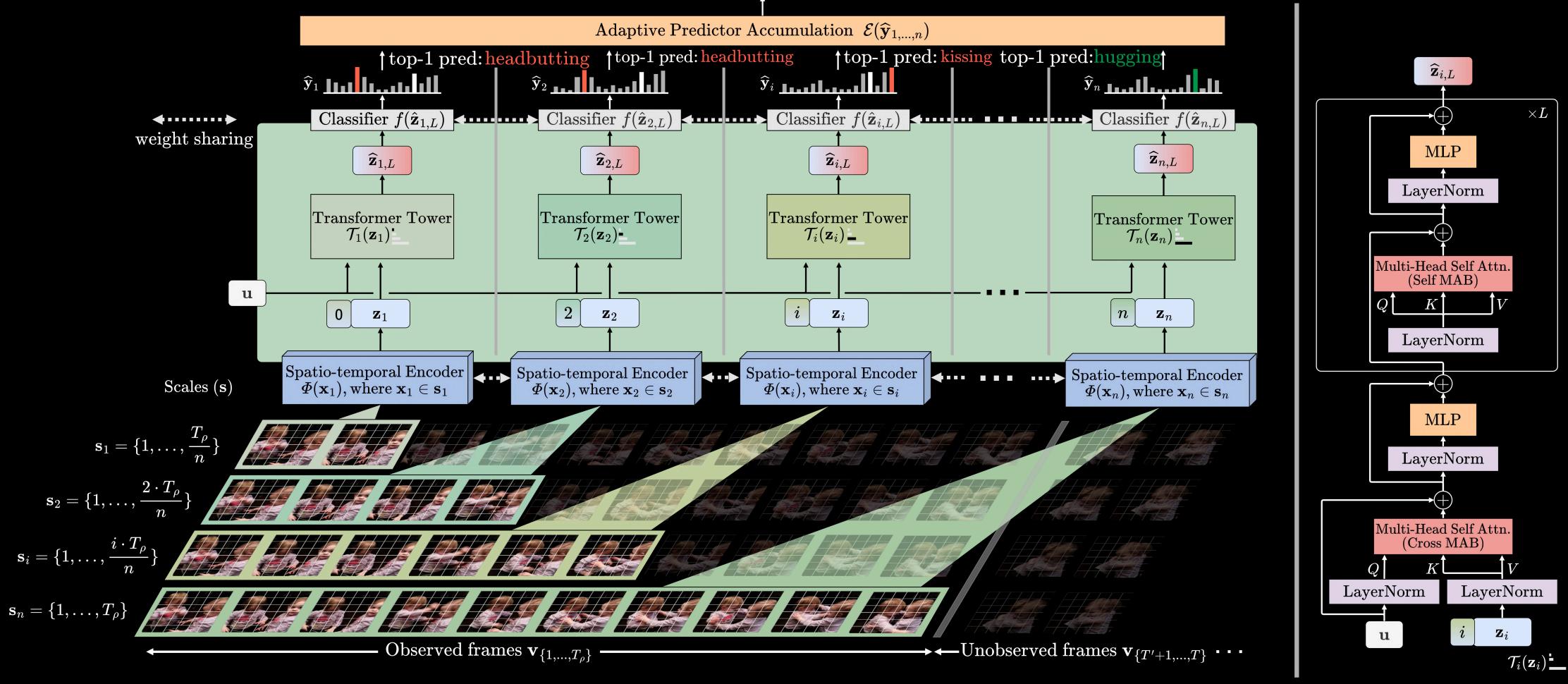
as well as partial motions.

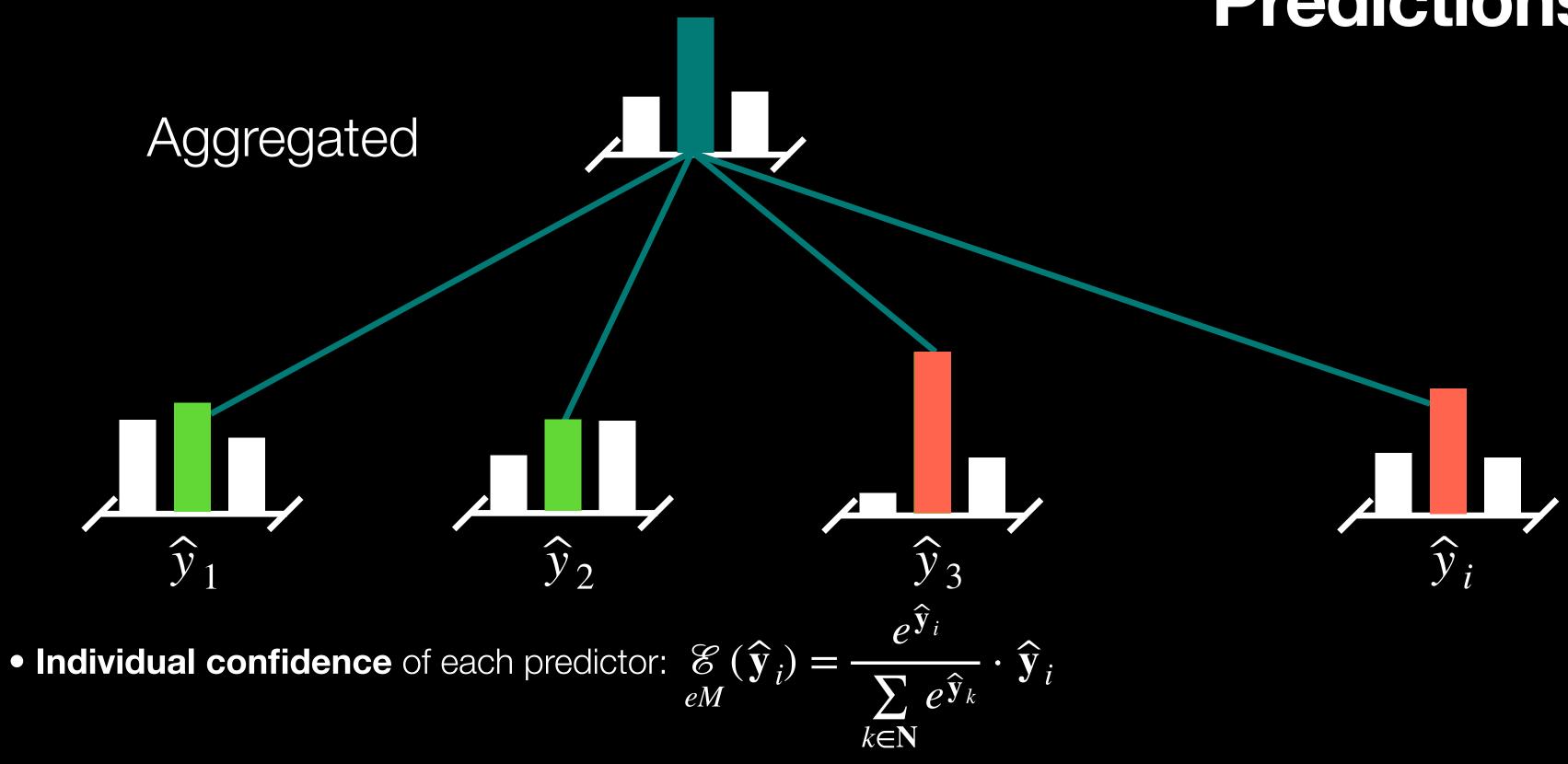
sources: "Late Night with Seth Meyers", S10E75 "Parks and Recreation", S4E1

Estimations about the future rely on contextual information,


- Hug
- Run
- Jump

Predictions throughout the action sequence


Capturing the evolution of the action at each stage.



TemPr model

$\hat{\mathbf{y}}$ **top-1** pred: hugging

• Collective agreement between individual predictions $\mathscr{E}_{eICW}(\mathbf{\hat{y}}_i, \mathbf{\hat{y}})$

The final aggregation function takes the form : $\mathscr{E}({f \hat{y}}_1)$

Predictions aggregation

Individual predictors

$$= \frac{e^{DSC(\widehat{\mathbf{y}}_i,\overline{\widehat{\mathbf{y}}})^{-1}}}{\sum_{k \in \mathbf{N}} e^{DSC(\widehat{\mathbf{y}}_k,\overline{\widehat{\mathbf{y}}})^{-1}}} \cdot \widehat{\mathbf{y}}_k}$$

$$\sum_{i \in \mathbb{N}} \beta \cdot \mathscr{E}_{eICW}(\widehat{\mathbf{y}}_i, \overline{\widehat{\mathbf{y}}}) + (1 - \beta) \cdot \mathscr{E}_{eM}(\widehat{\mathbf{y}}_i)$$

Accuracies over observation ratios (ρ) – UCF101

Method	Backbone	dim	Observation ratios (ρ)								
	Dackoolie		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
DBDNet	ResNeXt101	3D	82.7	86.6	88.3	89.7	90.6	91.2	91.7	91.9	92.0
IGGNN			80.2	-	89.8	-	92.9	-	94 .1	-	94.4
ERA			89.1	-	92.4	-	94.3	-	<u>95.4</u>	-	95.7
TemPr ≟ (ours)			85.7	91.4	92.1	92.7	93.5	<u>93.9</u>	94.4	94.6	94.9
TemPr ⊑ (ours)	$X3D_M$	3D	87.9	<u>93.4</u>	<u>94.5</u>	<u>94.8</u>	<u>95.1</u>	95.2	95.6	<u>96.4</u>	96.3
TemPr ⊑ (ours)	MoViNet-A4	3D	88.6	93.5	94.9	94.9	95.4	95.2	95.3	96.6	96.2
TemPr ≒			87.3	93.1	94.9	94.6	95.2	94.9	94.6	95.1	95.0
TemPr =_	MoViNet-A4	3D	85.6	92.9	93.6	94.5	94.4	94.2	94.2	94.6	94.8
TemPr –			85.2	92.1	92.5	92.9	93.3	93.7	93.5	93.8	93.7

Top-1 accuracies (%) of action prediction methods on UCF-101 over different observation ratios (ρ). Methods are grouped w.r.t. the backbone used. We report TemPr results on 5 backbones. The best results per ρ are in **bold** and second best are <u>underlined</u>.

Accuracies over observation ratios (ρ) — NTU-RGB/SSsub21/SSv2/EK-100

Top-1 accuracy (%) of EAP over different observation ratios (ρ).

Method	Observation ratios (ρ)						Method	Observation ratios (ρ)					
	0.1	0.2	0.3	0.5	0.7	0.9	method	0.1	0.2	0.3	0.5	0.7	0.9
RankLSTM	11.5	16.5	25.7	48.0	61.0	66.1	mem-LSTM	14.9	17.2	18.1	20.4	23,2	24.5
DeepSCN	16.8	21.5	30.6	48.8	58.2	60.0	MS-LSTM	16.9	16.6	16.8	16.7	16.9	17.1
MSRNN	15.2	20.3	29.5	51.6	63.9	68.9	MSRNN	20.1	20.5	21.1	22.5	24.0	27.1
TS (2×L)	27.8	35.8	46.3	67.4	77.6		GGN	21.2	21.5	23.3	27.4	30.2	30.5
							IGGN	22.6	-	25.0	28.3	32,2	34.1
TemPr ⊾ (ours)	29.3	38.7	50.2	70.1	78.8	84,2	TemPr ⊾ (ours)		34.8	37.9	41.3	45.8	48.6

(a) NTU-RGB.

			Ve	rb					No	oun					Α	ction		
Method	Observation ratios (ρ)																	
	0.1	0.2	0.3	0.5	0.7	0.9	0.1	0.2	0.3	0.5	0.7	0.9	0.1	0.2	0.3	0.5	0.7	0.9
Baseline (Inference)	17.3	19.7	27.0	48.7	60.5	64.2	19.5	21.7	25.3	38.5	46.7	49.1	5.4	7.6	11,1	24.3	34.1	37.6
Baseline (Fine-tuned)	20.6	21.8	29.4	49.8	61.3	64.3	21.3	24,2	27.6	39.4	47.3	49.1	6.9	9.1	12.8	25.5	34.9	37.5
TemPr ⊑ (ours)	21.4	22,5	34.6	54.2	63.8	67.0	22.8	25.5	32,3	43.4	49,2	53.5	7.4	9.8	15.4	28.9	37.3	40.8

(b) SSsub21.

Method	0.1	Obs. ra 0.3	atios (ρ) 0.5
Baseline (Inference)	6.9	17.6	28.9
Baseline (Fine-tuned)	14.4	23.5	31.1
TemPr ⊾ (ours)	20.5	28.6	41,2

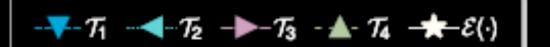
(c) SSv2.

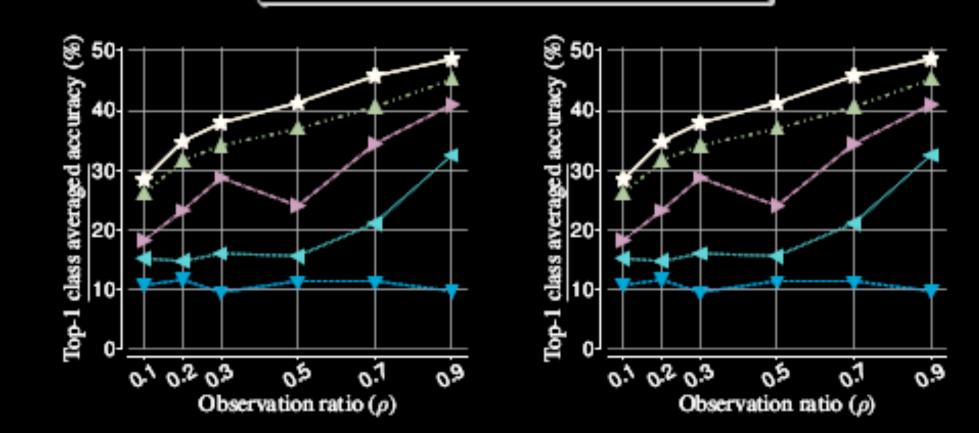
(d) EK-100.

Ablations on UCF-101

(a) Video Scales Strategy.

(b) Aggregation function.


Scale strategy	Ob	servatio	n ratios	s (p)	. ·	Aggregation	ρ			
Scale strategy	0.2	0.4	0.6	0.8		riggiogation	0.2	0.4		
full 🔳	86.4	88.3	88.8	89.0		avg	89.5	90.1		
equal	83.7	84.6	86.3	87.1		softmax	87.8	89.4		
random 🚽	88.8	89.7	90.2	90.6		top	84.6	87.5		
decreasing	90.0	90.9	91.6	92.6		gate ($\theta = 0.1$)	85.4	88.5		
increasing 🖦	90.2	90.9	91.8	92.3		ICW	89.7	90.1		
						weighted	88.5	89.0		
						weighted ($ heta$) 🏶	83.4	85.8		
						adaptive $(\mathcal{E}(\cdot))$	90.2	90.9		


auaptive

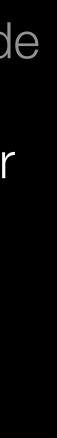
Ablation studies on UCF-101 with TemPr is across obs. ratios. We use ϕ to denote softmax during training and ϕ for $\theta = \frac{1}{2n}$.

(c) Weight sharing over attention towers and classifiers.

Weight	sharing		ρ	
MAB	$f(\cdot)$	0.2	0.4	0.6
1	×	73.4	76.2	79.0
×	×	84.7	85.8	87.3
1	1	89.2	90.0	90.7
×	1	90.2	90.9	91.8

Class-based ablations

Top tower predictors per class and observation ratio for TemPr \perp . Towers $\mathcal{T}_1 = , \mathcal{T}_2 = , \mathcal{T}_3 =$ and $\mathcal{T}_4 =$ are highlighted for better readability.


class name		Observation ratios ρ									
class name	0.1	0.2	0.3	0.5	0.7	0.9					
Putting smthng similar to other things	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4					
Showing smthng behind smthng	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_3					
Holding smthng	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_4					
Poking smthng without collapsing	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_4					
Pretending to sprinkle air onto smthng	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_3					
Pulling two ends of smthng stretched	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_4					
Putting smthng into smthng	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_4					
Pretending to turn smthng upside down	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_3	\mathcal{T}_4					
Poking a stack of smthng collapses	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_e					
Pulling smthng from left to right	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_3					
Pushing smthng from left to right	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_4					
Pretending to open smthng without	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_3	\mathcal{T}_2					
Opening smthng	\mathcal{T}_4	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_3	\mathcal{T}_2	\mathcal{T}_2					
Showing a photo of smthng	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_2	\mathcal{T}_2	\mathcal{T}_1					
Stuffing smthng into smthng	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_3	\mathcal{T}_2	\mathcal{T}_2	\mathcal{T}_2					
Putting smthng on the edge of smthng	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_1					
Picking smthng up	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_2	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_2					
Closing smthng	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_2	\mathcal{T}_2	\mathcal{T}_3	\mathcal{T}_2					
Putting smthng upright on the table	\mathcal{T}_4	\mathcal{T}_3	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_2					
Turning smthng upside down	\mathcal{T}_3	\mathcal{T}_3	\mathcal{T}_2	\mathcal{T}_2	\mathcal{T}_2	\mathcal{T}_1					
Pulling two ends of smthng two pieces	\mathcal{T}_3	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_2	\mathcal{T}_2					

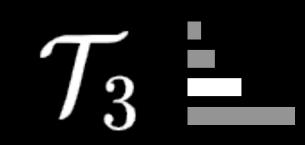
We evaluate the top-performing tower for each class across observation ratios (ρ).

- Towers for smaller scales, are better suited for classes such as Picking something up or Closing something.

- Towers of larger scales perform better for classes that include long-term dependencies; e.g.

Poking a stack of something without the stack collapsing or Pretending to sprinkle air onto something.

$\rho = 0.3$


Pulling two ... gets stretched: 13.48 Pulling two ... into two pieces: 11.10 Turning something ... down: 5.80

Pulling two ... two pieces: 11.31 Putting two ... gets stretched: 6.87 Stuffing ... into something: 1.30

\mathcal{T}_4

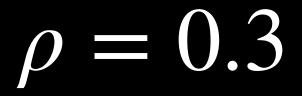
Putting two ... two pieces: 12.03 Putting two ... two pieces: 4.92 Putting something ... something: 2.71 Holding something: 8.58 Putting two ... two pieces: 8.46 Pulling something ... to right: 4.99

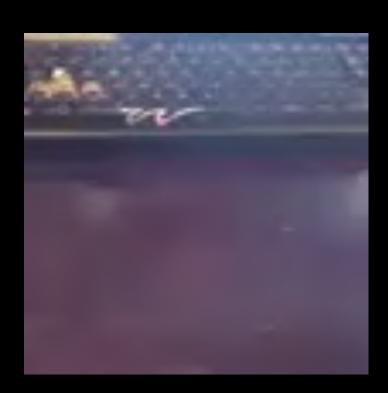
$\rho = 0.3$

 \mathcal{T}_1

Putting ... something: 9.25 Stuffing ... into something: 4.48 Showing ... something: 2.14

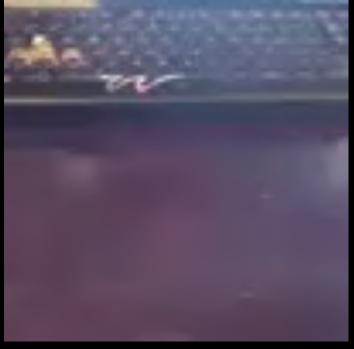
Stuffing ... into something: 6.75 Putting ... something: 6.35 Closing something: 6.03





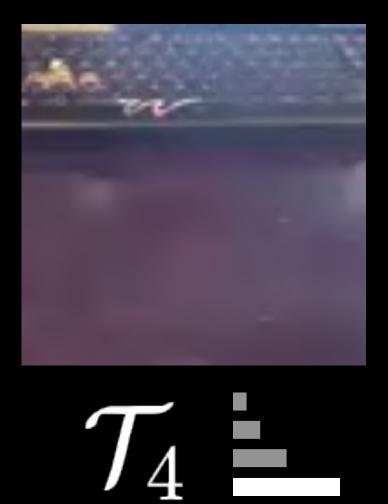
Stuffing ... into something: 9.71 Holding something: 5.54 Opening something: 8.19 Putting ... something: 6.75

Closing something: 2.24 Pulling something ... something: 2.23


 \mathcal{T}_2

 \mathcal{T}_1

Putting something ... table: 10.11 Pretending ... onto something: 8.18 Holding something: 5.93


Pulling two ... two pieces: 6.29 Putting something ... table: 5.85 Pulling two ... gets stretched: 3.36

Putting two ... gets stretched: 9.22 Putting two ... gets stretched: 11.98 Putting two ... two pieces: 5.55 Putting something ... table: 2.43

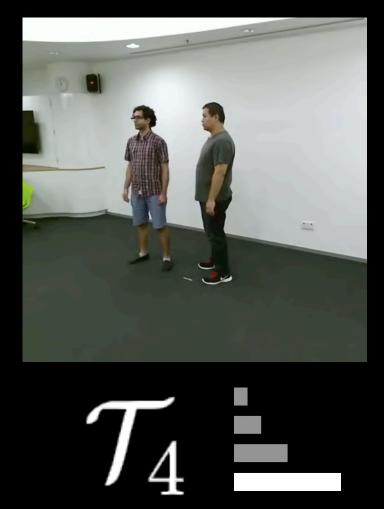
Putting two ... two pieces: 8.72 Putting something ... something: 4.20

$\rho = 0.7$

 \mathcal{T}_1

Rock-paper-scissors: 3.43

Whisper: 3.32 Shaking hands: 3.28


Touch pocket: 6.89 Whisper: 5.11 Pat on back: 5.04

Pat on back: 7.84 Whisper: 7.45 Punch/slap: 6.23

Pat on back: 9.31 Whisper: 7.61 Knock over: 5.93

Project website

Links

GitHub code