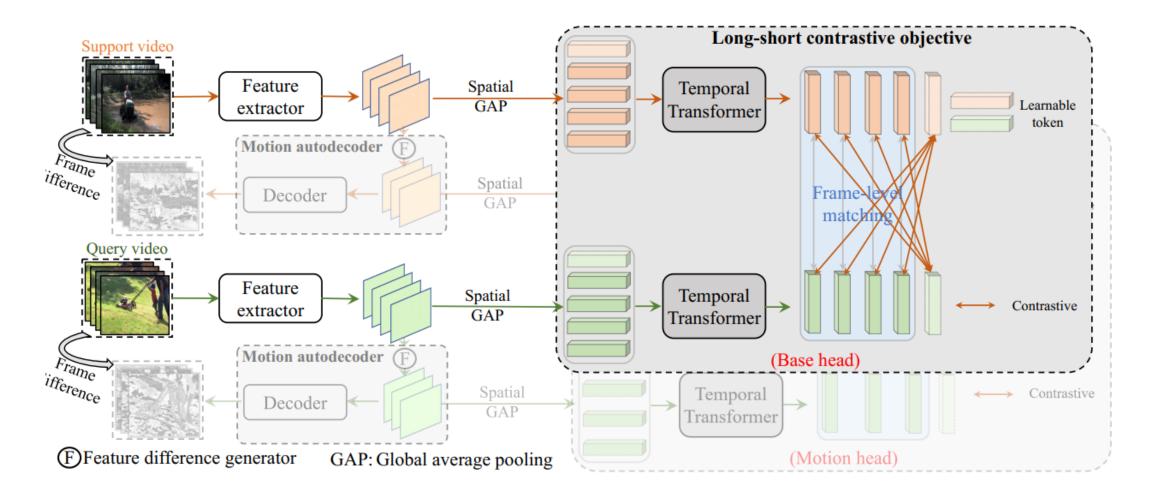

MoLo: Motion-augmented Long-short Contrastive Learning for Few-shot Action Recognition

Xiang Wang¹, Shiwei Zhang², Zhiwu Qing¹, Changxin Gao¹, Yingya Zhang², Deli Zhao², Nong Sang¹

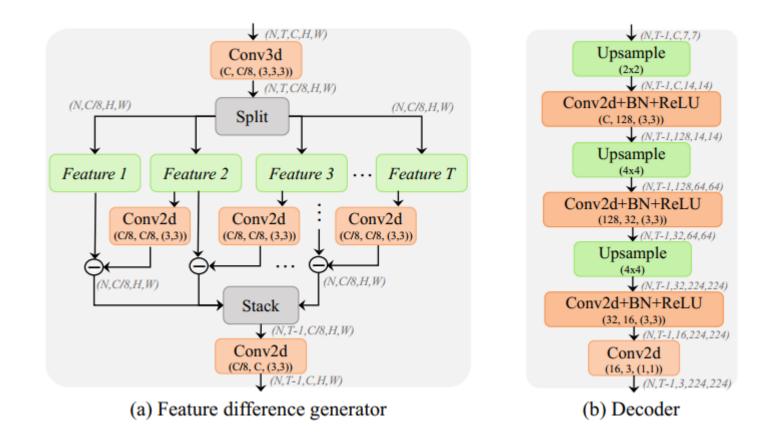
Code: https://github.com/alibaba-mmai-research/MoLo

²Alibaba Group


Limitations of metrics-based meta-learning frameworks

Limitations of the previous approaches:

- (1) the matching procedure between local frames tends to be inaccurate due to the lack of guidance to force long-range temporal perception;
- (2) explicit motion learning is usually ignored, leading to partial information loss



MoLo

Motion-augmented Long-short Contrastive Learning (MoLo)

MoLo

Motion-augmented Long-short Contrastive Learning (MoLo)

Comparison with state-of-the-art

Method	Reference			SSv2-Full			Kinetics				
Method	Reference	1-shot	2-shot	3-shot	4-shot	5-shot	1-shot	2-shot	3-shot	4-shot	5-shot
MatchingNet [61]	NeurIPS'16	-	-	-	-	-	53.3	64.3	69.2	71.8	74.6
MAML [14]	ICML'17	-	-	-	-	-	54.2	65.5	70.0	72.1	75.3
Plain CMN [88]	ECCV'18	-	-	-	-	-	57.3	67.5	72.5	74.7	76.0
CMN++ [88]	ECCV'18	34.4	-	-	-	43.8	-	-	-	-	-
TRN++ [86]	ECCV'18	38.6	-	-	-	48.9	-	-	-	-	-
TARN [3]	BMVC'19	-	-	-	-	-	64.8	-	-	-	78.5
CMN-J [89]	TPAMI'20	-	-	-	-	-	60.5	70.0	75.6	77.3	78.9
ARN [81]	ECCV'20	-	-	-	-	-	63.7	-	-	-	82.4
OTAM [4]	CVPR'20	42.8	49.1	51.5	52.0	52.3	72.2*	75.9	78.7	81.9	84.2*
ITANet [83]	IJCAI'21	49.2	55.5	59.1	61.0	62.3	73.6	-	-	-	84.3
$TRX (\Omega = \{1\}) [44]$	CVPR'21	38.8	49.7	54.4	58.0	60.6	63.6	75.4	80.1	82.4	85.2
$TRX (\Omega = \{2, 3\}) [44]$	CVPR'21	42.0	53.1	57.6	61.1	64.6	63.6	76.2	81.8	83.4	85.9
$TA^2N [35]$	AAAI'22	47.6	-	-	-	61.0	72.8	-	-	-	85.8
MTFAN [79]	CVPR'22	45.7	-	-	-	60.4	74.6	-	-	-	87.4
STRM [58]	CVPR'22	43.1	53.3	59.1	61.7	68.1	62.9	76.4	81.1	83.8	86.7
HyRSM [74]	CVPR'22	54.3	<u>62.2</u>	<u>65.1</u>	<u>67.9</u>	69.0	73.7	80.0	<u>83.5</u>	<u>84.6</u>	86.1
Bi-MHM [74]	CVPR'22	44.6*	49.2*	53.1*	54.8*	56.0*	72.3*	77.2*	81.1*	84.1*	84.5*
Nguyen et al. [41]	ECCV'22	43.8	-	-	-	61.1	74.3	-	-	-	87.4
Huang <i>et al</i> . [21]	ECCV'22	49.3	-	-	-	66.7	73.3	-	-	-	86.4
HCL [85]	ECCV'22	47.3	54.5	59.0	62.4	64.9	73.7	79.1	82.4	84.0	85.8
MoLo (OTAM)	-	55.0	61.8	64.8	67.7	<u>69.6</u>	73.8	80.2	83.1	84.2	85.1
MoLo (Bi-MHM)	-	56.6	62.3	67.0	68.5	70.6	74.0	80.4	83.7	84.7	85.6

Table 1. Comparison with recent state-of-the-art few-shot action recognition methods on the SSv2-Full and Kinetics datasets under the 5-way setting. The experimental results are reported as the shot increases from 1 to 5. "-" indicates the result is not available in published works. The best results are bolded and the underline means the second best performance. "*" stands for the results of our implementation.

Comparison with state-of-the-art

Method	Reference		UCF101			SSv2-Small			HMDB51			
Method	Reference	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot		
MatchingNet [61]	NeurIPS'16	-	-	-	31.3	39.8	45.5	-	-	-		
MAML [14]	ICML'17	-	-	-	30.9	38.6	41.9	-	-	-		
Plain CMN [88]	ECCV'18	-	-	-	33.4	42.5	46.5	-	-	-		
CMN-J [89]	TPAMI'20	-	-	-	36.2	44.6	48.8	-	-	-		
ARN [81]	ECCV'20	66.3	-	83.1	-	-	-	45.5	-	60.6		
OTAM [4]	CVPR'20	79.9	87.0	88.9	36.4	45.9	48.0	54.5	65.7	68.0		
ITANet [83]	IJCAI'21	-	-	-	39.8	49.4	53.7	-	-	-		
TRX [44]	CVPR'21	78.2	92.4	<u>96.1</u>	36.0	51.9	<u>56.7</u> *	53.1	66.8	75.6		
$TA^{2}N[35]$	AAAI'22	81.9	-	95.1	-	-	-	59.7	-	73.9		
MTFAN [79]	CVPR'22	84.8	-	95.1	-	-	-	59.0	-	74.6		
STRM [58]	CVPR'22	80.5	92.7	96.9	37.1	49.2	55.3	52.3	67.4	<u>77.3</u>		
HyRSM [74]	CVPR'22	83.9	93.0	94.7	40.6	<u>52.3</u>	56.1	60.3	<u>71.7</u>	76.0		
Bi-MHM [74]	CVPR'22	81.7*	88.2*	89.3*	38.0*	47.6*	48.9*	58.3*	67.1*	69.0*		
Nguyen et al. [41]	ECCV'22	84.9	-	95.9	-	-	-	59.6	-	76.9		
Huang <i>et al</i> . [21]	ECCV'22	71.4	-	91.0	38.9	-	61.6	60.1	-	77.0		
HCL [85]	ECCV'22	82.5	91.0	93.9	38.7	49.1	55.4	59.1	71.2	76.3		
MoLo (OTAM)	-	<u>85.4</u>	<u>93.4</u>	95.1	<u>41.9</u>	50.9	56.2	59.8	71.1	76.1		
MoLo (Bi-MHM)	-	86.0	93.5	95.5	42.7	52.9	56.4	60.8	72.0	77.4		

Table 2. Comparison with state-of-the-art few-shot action recognition methods on UCF101, SSv2-Small, and HMDB51 in terms of 1-shot, 3-shot, and 5-shot classification accuracy. "-" stands for the result is not available in published works. The best results are bolded in black, and the underline represents the second best result. "*" indicates the results of our implementation.

Ablation study

		Н	lead	SSv2-Full		
Long-short contrastive	Autodecoder	Base	Motion	1-shot	5-shot	
		√		44.6	56.0	
			\checkmark	46.3	60.6	
√		✓		52.2	68.0	
\checkmark	✓	✓		53.2	68.1	
	✓		\checkmark	47.8	61.8	
✓	\checkmark		\checkmark	53.9	69.7	
		✓	✓	49.2	63.4	
\checkmark		✓	\checkmark	53.3	68.2	
	✓	✓	\checkmark	53.2	68.1	
<u>√</u>	✓	✓	✓	56.6	70.6	

Table 3. Ablation study on SSv2-Full under 5-way 1-shot and 5-way 5-shot settings. The top line represents the baseline Bi-MHM. To avoid confusion, note that the "motion head without autodecoder" setting contains the feature difference generator by default.

Each module is complementary to each other

Ablation study

Satting	SSv2	-Full	Kinetics		
Setting	1-shot	5-shot	1-shot	5-shot	
Frame Difference	56.6	70.6	74.0	85.6	
RAFT Flow [57]	56.8	71.1	74.4	85.9	
TRX [44]	42.0	64.6	63.6	85.9	
TRX + Motion autodecoder	45.6	66.1	64.8	86.3	

Different motion reconstruction targets

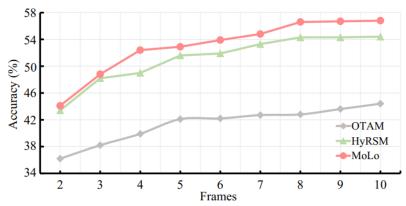


Figure 5. Ablation study on the effect of changing the number of input video frames under the 5-way 1-shot SSv2-Full setting.

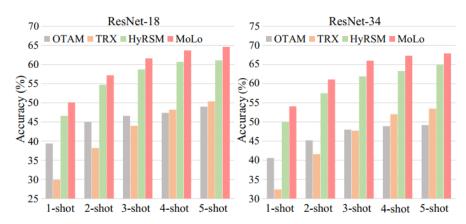


Figure 4. Performance comparison of varying backbone depth on the SSv2-Full dataset under the 5-way K-shot setting. The experiments are carried out with the shot changing from 1 to 5.

Varying backbone depth

Different number of frames

Ablation study

Setting	SSv2	-Full	Kinetics		
Setting	1-shot	5-shot	1-shot	5-shot	
Temporal Transformer×1	56.6	70.6	74.0	85.6	
Temporal Transformer×2	56.4	71.7	72.5	84.9	
Temporal Transformer × 3	56.0	71.3	71.6	84.2	
Temporal Transformer × 4	55.9	69.6	71.1	83.9	
Temporal Transformer×5	55.8	69.4	70.5	83.3	

Table 5. Ablation study for different number of temporal Transformer layers on the SSv2-Full and Kinetics datasets.

Different number of temporal Transformer layers

Setting			Kinetics		
Setting	1-shot	5-shot	1-shot	5-shot	
Temporal Transformer-only	53.2	68.1	72.7	84.6	
Temporal Transformer w/ TAP	54.8	69.5	73.3	85.2	
Temporal Transformer w/ token (MoLo)	56.6	70.6	74.0	85.6	

Table 6. Comparison experiments on the effect of learnable token and other variants on the SSv2-Full and Kinetics datasets.

Analysis of long-short contrastive objective

Method		SSv2-Full						Kinetics					
	5-way	6-way	7-way	8-way	9-way	10-way	5-way	6-way	7-way	8-way	9-way	10-way	
OTAM [4]	42.8	38.6	35.1	32.3	30.0	28.2	72.2	68.7	66.0	63.0	61.9	59.0	
TRX [44]	42.0	41.5	36.1	33.6	32.0	30.3	63.6	59.4	56.7	54.6	53.2	51.1	
HyRSM [74]	<u>54.3</u>	<u>50.1</u>	<u>45.8</u>	44.3	<u>42.1</u>	40.0	<u>73.7</u>	<u>69.5</u>	66.6	<u>65.5</u>	<u>63.4</u>	<u>61.0</u>	
MoLo	56.6	51.6	48.1	44.8	42.5	40.3	74.0	69.7	67.4	65.8	63.5	61.3	

Table 8. N-way 1-shot classification accuracy comparison with recent few-shot action recognition methods on the test sets of SSv2-Full and Kinetics datasets. The experimental results are reported as the way increases from 5 to 10.

N-way few-shot classification

Welcome to visit to our poster! ID: 00299

Thank you!