

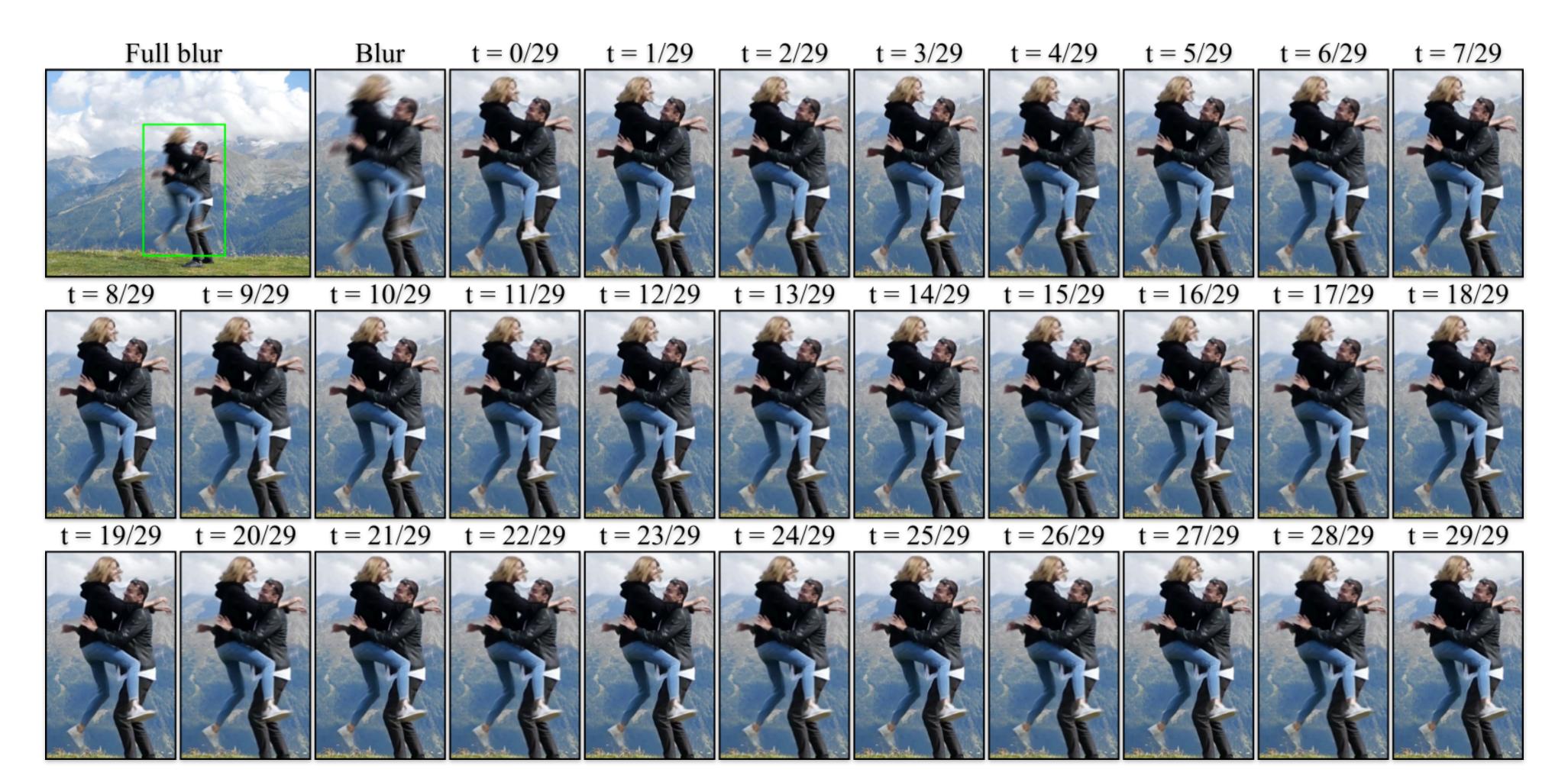
Blur Interpolation Transformer for Real-World Motion from Blur

Zhihang Zhong, Mingdeng Cao, Xiang Ji, Yinqiang Zheng, and Imari Sato

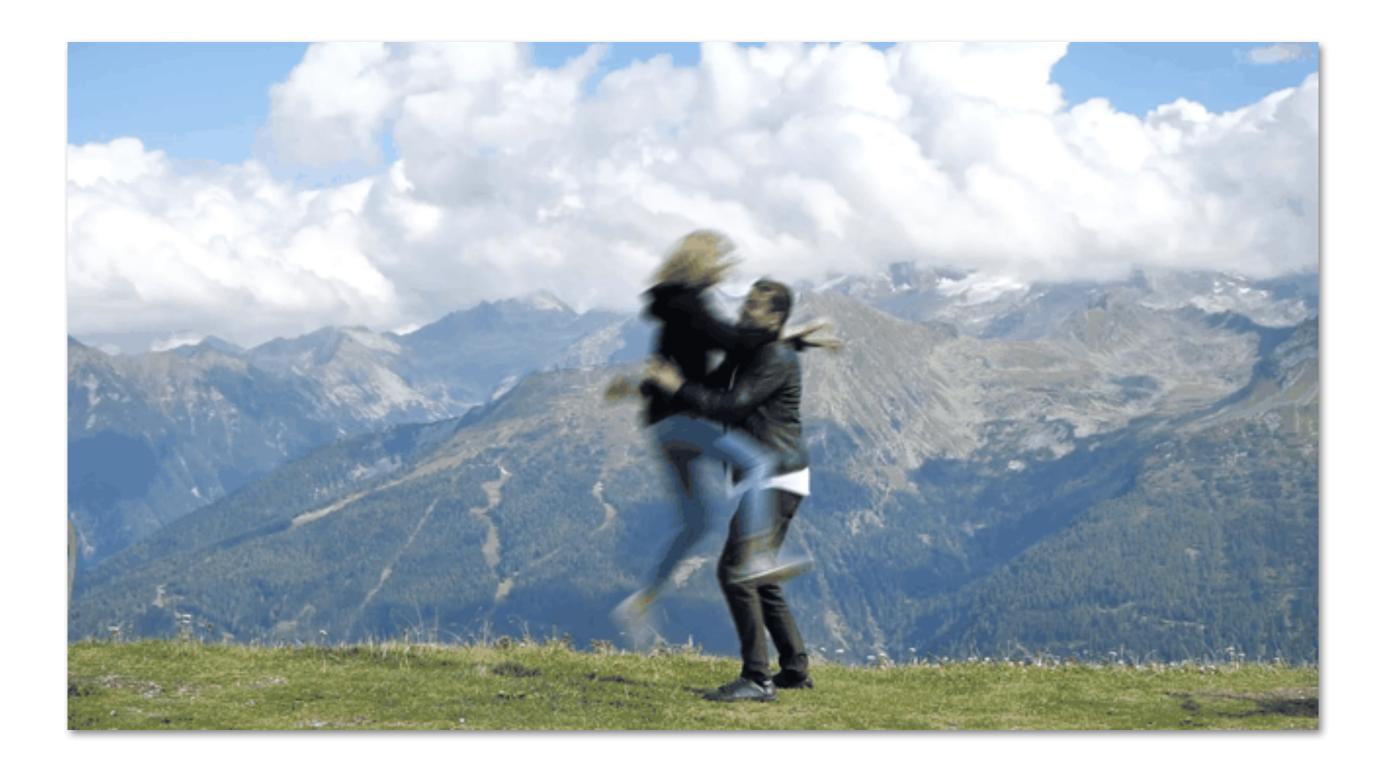
The University of Tokyo National Institute of Informatics

https://zzh-tech.github.io/BiT/

Arbitrary time blur interpolation Transforming a motion blurred image into a sharp video clip



Arbitrary time blur interpolation Arbitrary temporal super-resolution via motion blur

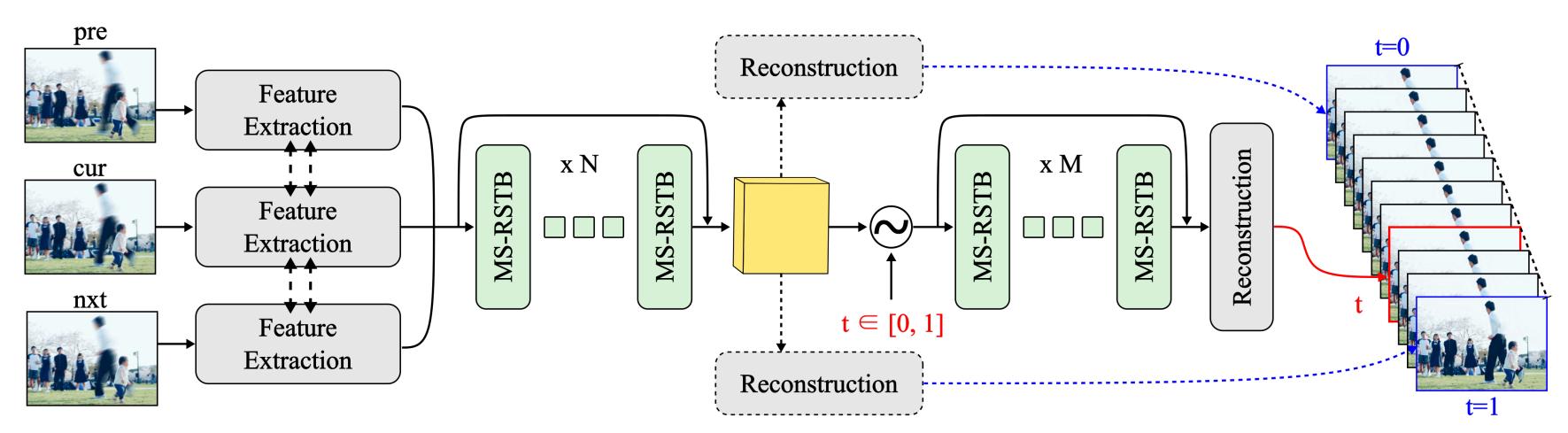


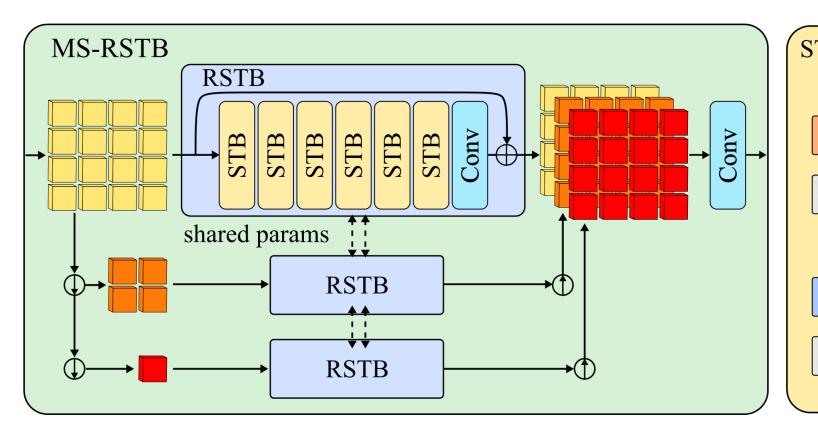
Existing challenges Performance and generalization

- of visual quality even with synthetic datasets
 - Blur interpolation Transformer (BiT)
- Poor generalization to real-world data
 - Real-world Blur Interpolation dataset (RBI)

The current methods still leave considerable room for improvement in terms

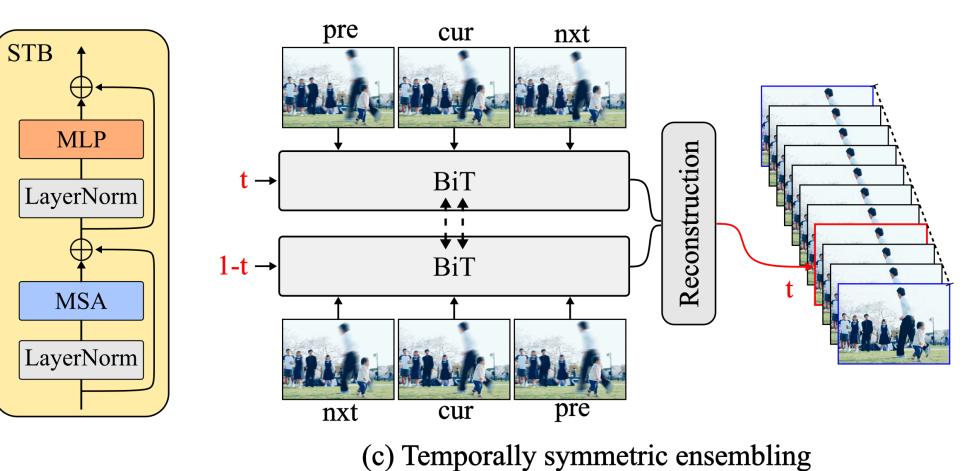
Blur interpolation Transformer Efficient blur interpolation network boosted by temporal strategies



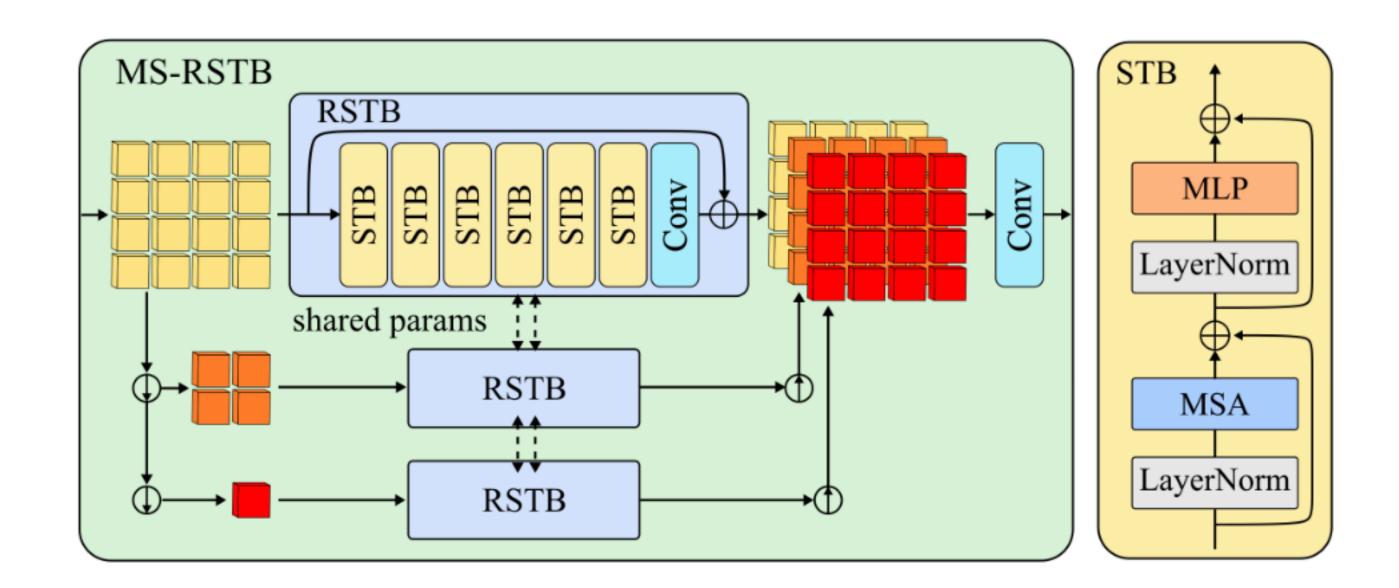


(b) Multi-scale residual Swin transformer block

(a) Overview of blur intra-interpolation transformer



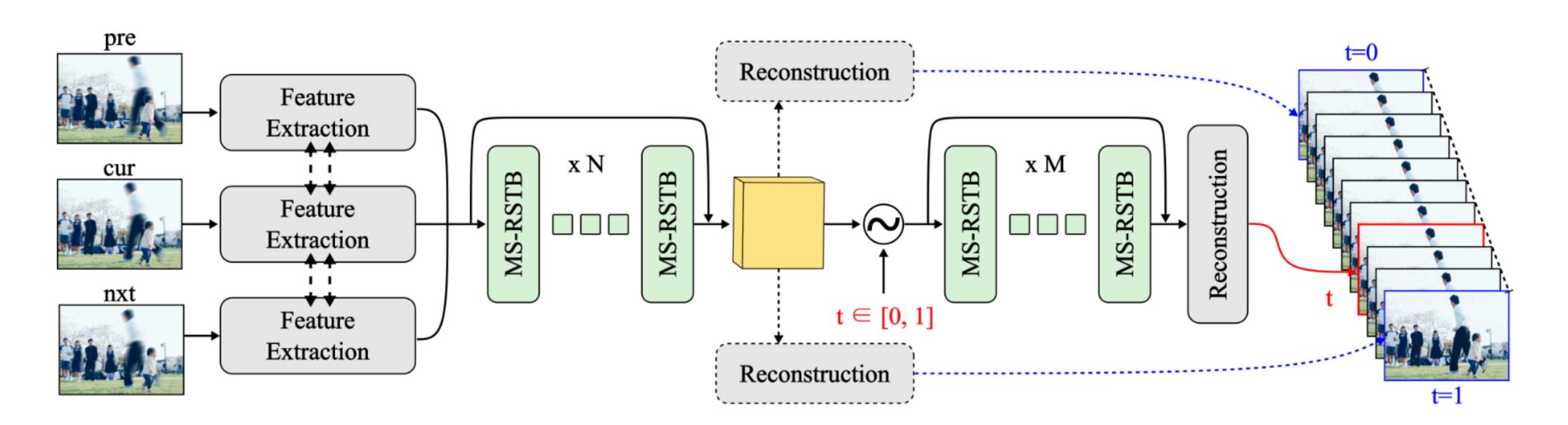
Blur interpolation Transformer Multi-scale residual Swin transformer block (MS-RSTB)



 Multi-scale residual Swin transformer block to efficiently tackle different blurscales and merge information from nearby frames in a coarse-to-fine manner

Blur interpolation Transformer Dual-ended temporal supervision strategy (DTS)

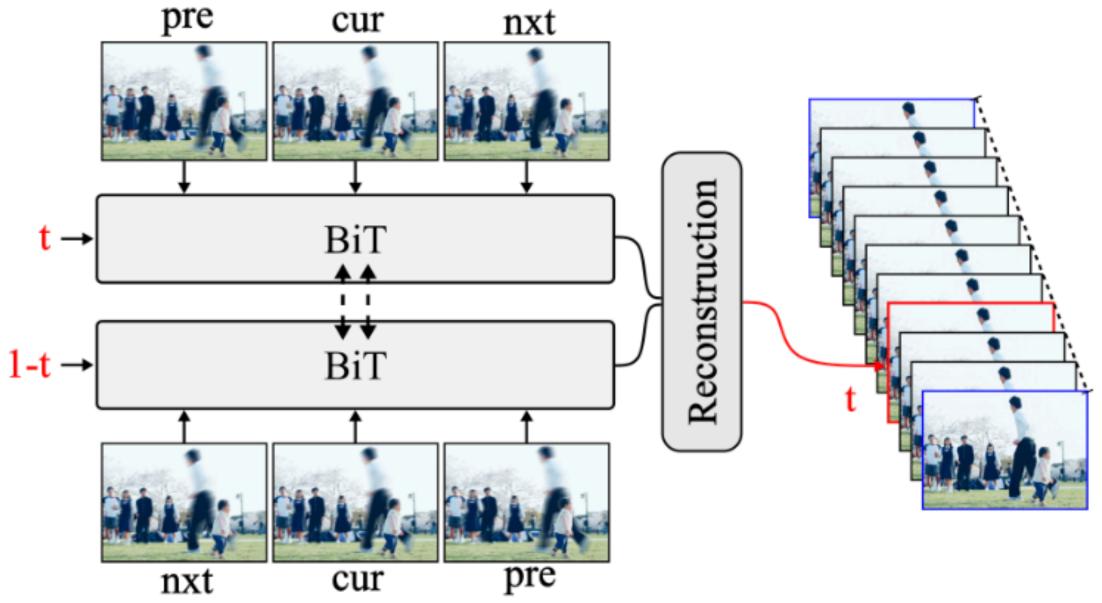
the latent sharp frame at arbitrary time instance



Dual-ended temporal supervision is used to "underpin and spread" the shared intermediate features, making them more conducive to the reconstruction of

Blur interpolation Transformer Temporal symmetric ensembling strategy (TSE)

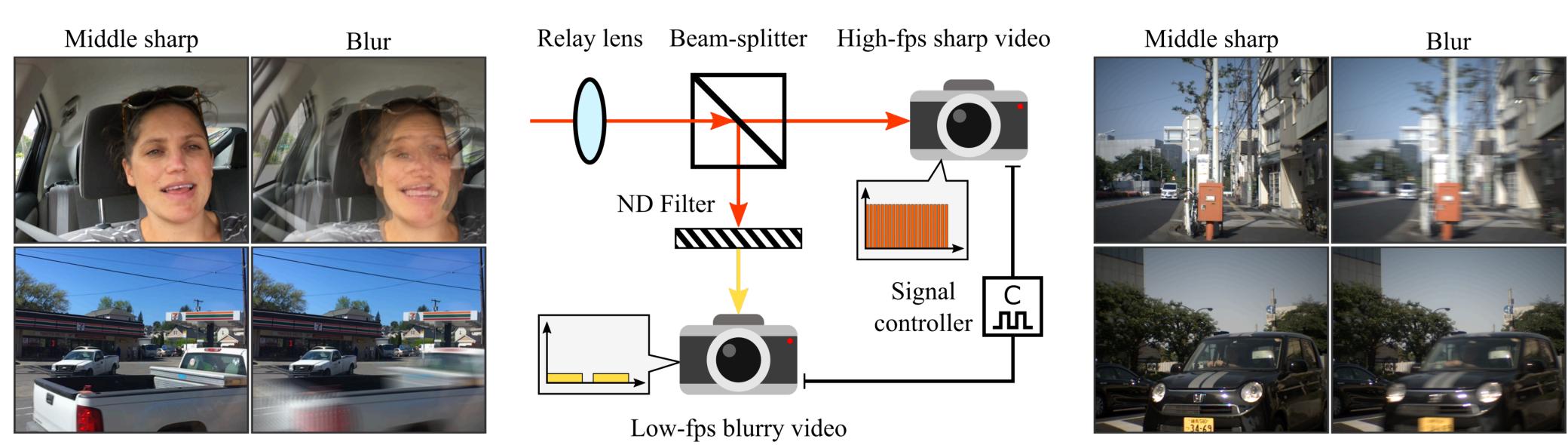
reconstruction



Using temporal symmetric properties to further enhance the features for

Blur interpolation dataset Beam-splitter-based co-axis camera system

real-world data



(a) Samples of Adobe240

 Using discrete consecutive frames to synthesize the blur will cause significant discontinuities, and models trained on such data have poor generalization on

(b) Hybrid-camera system

(c) Samples of RBI

Experiments **Quantitative comparison**

much faster (BiT: w/o TSE; BiT++: w/ TSE)

Table 1. Comparison with the state-of-the-arts on synthetic dataset Adobe240 and our real-world dataset RBI. Red denotes the best performance, and <u>blue</u> denotes the second best performance. Runtime is calculated uniformly using images from the Adobe240 dataset with size of 640×352 on a single RTX2080 Ti GPU.

	Adobe240		RBI		Runtime		
	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	1x [s] ↓	60x [s]↓	Params [M]↓
EDVR [49]+XVFI [43]	33.19	0.934	28.17	0.847	0.294	17.64	29.2
Jin <i>et al</i> . [9]	32.47	0.924	27.73	0.853	<u>0.250</u>	15.00	<u>10.8</u>
RPF ₄ [40]	33.32	0.935	28.55	0.872	0.746	44.76	11.4
DeMFI [28]	<u>34.34</u>	0.945	29.03	0.895	0.513	30.78	7.41
BiT	<u>34.34</u>	<u>0.948</u>	<u>29.90</u>	<u>0.900</u>	0.203	5.76	11.3
BiT++	34.97	0.954	30.45	0.908	0.395	<u>11.64</u>	11.3

Our method surpasses the prior arts with a significant margin while also being

Experiments **Ablation studies**

Table 2 verifies the effectiveness of the proposed module and strategies Table 3 indicates large N makes inference faster with slight performance loss

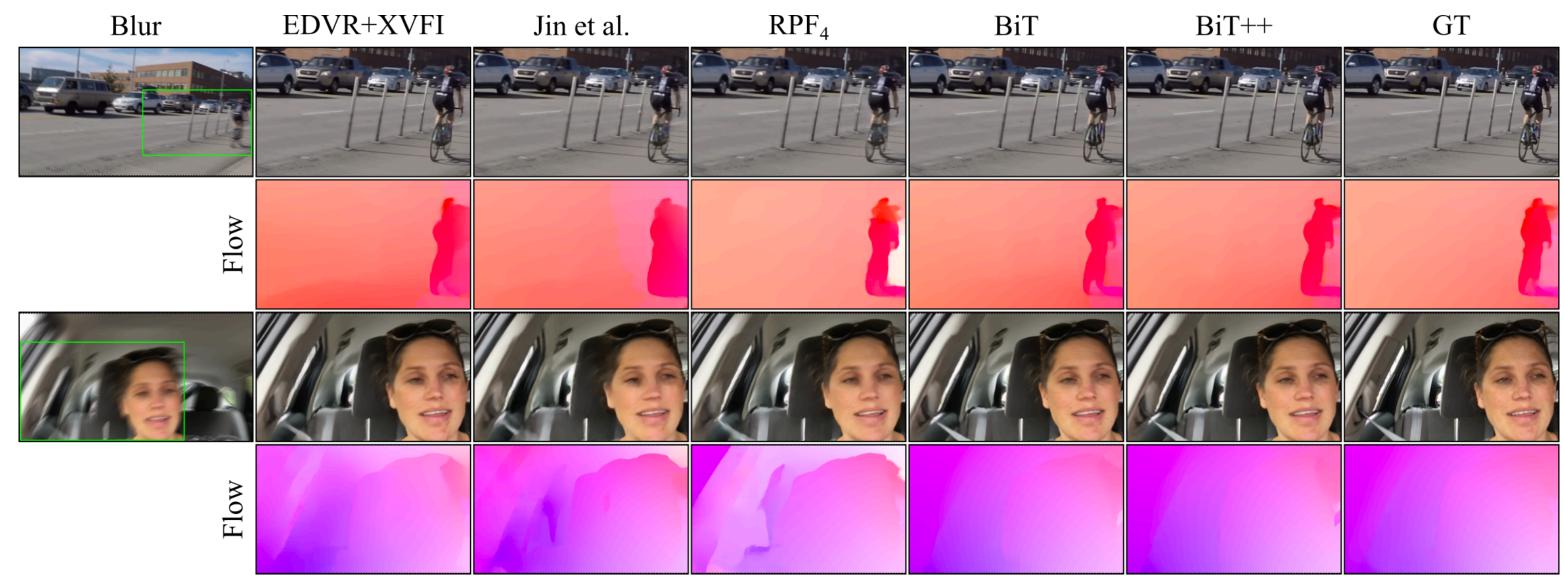
Table 2. Ablation studies. BiT w/o MS denotes BiT using single-scale RSTB module. BiT w/o DTS denotes BiT without dual-end temporal supervision. BiT+ denotes BiT that has the same training epochs as BiT++.

	Adobe240					RBI				
	BiT w/o MS	BiT w/o DTS	BiT	BiT+	BiT++	BiT w/o MS	BiT w/o DTS	BiT	BiT+	BiT++
PSNR ↑	33.96	34.10	34.34	34.52	34.97	29.40	29.44	29.90	29.99	30.45
SSIM \uparrow	0.944	0.946	<u>0.948</u>	0.946	0.954	0.893	0.894	0.900	<u>0.901</u>	0.908

	N = 0 M = 6	N = 1 M = 5	N=2 M=4	N=3 M=3	N=4 M=2	N = 5 M = 1	N = 6 M = 0
PSNR \uparrow	34.08	34.09	34.18	34.34	<u>34.30</u>	34.05	27.13
SSIM ↑	<u>0.947</u>	0.942	0.943	0.948	0.948	0.944	0.832
60x Runtime [s] \downarrow	11.34	9.36	7.98	5.76	4.02	<u>2.16</u>	0.36

Table 3. Effect of # of MS-RSTB. The performance is evaluated on Adobe240 using BiT.

Experiments Qualitative comparison



(a) Comparison on Adobe240 dataset

(b) Comparison on RBI dataset

Experiments Cross-validation between synthetic and real-world datasets

- In figure 5 (a), testing on real-world samples from RBI, we can observe severe artifacts in the results of the model trained on Adobe240
- Conversely, in figure 5 (b), the model trained on RBI does not introduce artifacts to synthetic samples from Adobe240

(a) Test samples from RBI

(b) Test samples from Adobe240

