

Masked Image Modeling with Local Multi-Scale Reconstruction

Haoqing Wang¹, Yehui Tang^{1,2}, Yunhe Wang², Jianyuan Guo², Zhi-Hong Deng¹, Kai Han² ¹Peking University ²Huawei Noah's Ark Lab

TUE-AM-203

LocalMIM: local multi-scale reconstruction

 \blacktriangleright For MIM models, thousands of GPU Hours for pre-training limit their industrial applications.

\succ Local reconstruction

- we are the first to conduct reconstruction tasks at both lower and upper layers, which explicitly guide multiple layers to accelerate the representation learning.
- Multi-scale supervision
 - for both columnar and pyramidal architectures, the lower layers reconstruct the fine-scale supervision signals, and the upper layers reconstruct the coarse-scale ones.

Performance

- LocalMIM is architecture-agnostic and can be used in both columnar and pyramidal architectures.
- On columnar ViT-B, LocalMIM achieves the best results of BEiT, MAE and MaskFeat with 27.4x, 3.1x and 5.6x acceleration respectively.
- On pyramidal Swin-B, LocalMIM achieves the best results of SimMIM₁₉₂ and GreenMIM with 3.6x and 6.4x acceleration respectively.

Background

Masked Image Modeling: randomly mask some input parts and inference them based on other parts.

Classic works

MaskFeat [Wei et al., 2022]

Background

Disadvantages: huge computational burden and slow pre-training process The pre-training efficiency is an inevitable bottleneck limiting the industrial applications of MIM.

Existing works: accelerate the encoding process

1. the encoder only processes visible patches, e.g., MAE, GreenMIM.

2. shrinking the input resolution to lessen the input patches, e.g., LoMaR, UM-MAE, FastMIM.

None of them focus on the representation learning process itself!

Analysis

The lower layers of the encoder play the key role in the representation learning of MIM: 1) For pre-training, the well-learned lower layers can propagate knowledge to the upper ones and facilitate their learning.

2) For fine-tuning, the upper layers are typically tuned quickly to adapt the downstream task while the lower ones change more slowly and need to be well-learned during pre-training.

All existing MIM models only explicitly guide the top layer!

Analysis

Without explicit guidance, the inter-patch semantical relations on the lower layers can not be sufficiently learned.

It has the computational complexity with a quadratic dependence on patch number N, i.e., $\Theta(N^2)$.

Existing MIM models with global loss have small Normalized Mutual Information (NMI) at lower layers, which means their patches have less query-adaptive attentions.

Figure: NMI between query and key patches at each layer

Model

Encoder (e.g., ViT, Swin) patches Stage 3 Stage 1 Stage 2 visible Patchify & mask Decoder Decoder Local Reconstruction: loss loss ... multi-scale supervisions (e.g., normalized pixels, HOG feature) visible patch features mask tokens predictions input Figure: Overview of LocalMIM.

1. we are the *first* to conduct reconstruction tasks at multiple layers. 2. we are the *first* to use multiple scale supervision signals, where the lower layers reconstruct the fine-scale supervisions and the upper layers reconstruct the coarse-scale ones.

Model

Input:

 $x \in \mathbb{R}^{H \times W \times C}$

Supervisions:

 $y_i = \pi(x_i)$ where $\{x_i \in \mathbb{R}^{p \times p \times C}\}_{i=1}^{HW/p^2}$ are non-overlapping patches with the scale of $\frac{H}{p} \times \frac{W}{p}$, π is the feature descriptor, e.g., codebook, HOG, pixel normalization.

Decoder: Transformer block + rescale + MLP

The tiny decoders have only one Transformer block with small embedding dim and few attention heads.

Figure: reconstruction process under a scale.

1. Classificat	ion on ImageNet-1K
ViT-B:	
BEiT	27.4x
MAE	3.1x
MaskFeat	5.6x
Swin-B:	
SimMIM	3.6x
GreenMIM	6.4x

Model	Backbone	# Params	PT Epoch	GPU Hours/Ep.	Total GPU Hours	Acc
Scratch, ViT	ViT-B	86M	0	1.5	-	82.3
Scratch, Swin	Swin-B	88M	0	2.4	-	83.5
MoCo v3 [12]	ViT-B	86M	600	-		83.2
DINO [7]	ViT-B	86M	300	-	-	82.8
BEiT [2]	ViT-B	86M	800	2.4	1920	83.2
iBOT [67]	ViT-B	86M	400	10.1	4040	83.8
MAE [24]	ViT-B	86M	800	1.1	880	83.3
MAE [24]	ViT-B	86M	1600	1.1	1760	83.6
MAE [24]	ViT-L	307M	1600	1.7	2720	85.9
MaskFeat [57]	ViT-B	86M	1600	3.9	6240	84.0
CAE [11]	ViT-B	86M	800	2.8	2240	83.6
LoMaR [†] [8]	ViT-B	86M	1600	1.4	2240	84.1
data2Vec [†] [1]	ViT-B	86M	800	3.0	2400	84.2
PeCo [17]	ViT-B	86M	800	-	-	84.5
LocalMIM-HOG	ViT-B	86M	100	0.7	70	83.3
LocalMIM-HOG	ViT-B	86M	1600	0.7	1120	84.0
LocalMIM-HOG	ViT-L	307M	800	1.0	800	85.8
SimMIM ₁₉₂ [60]	Swin-B	88M	800	1.8	1440	84.0
SimMIM ₁₉₂ [60]	Swin-L	197M	800	3.0	2400	85.4
GreenMIM [31]	Swin-B	88M	800	0.8	640	83.7
GreenMIM [31]	Swin-L	197M	800	1.4	1120	85.1
LocalMIM-Pixel	Swin-B	88M	100	1.0	100	83.7
LocalMIM-HOG	Swin-B	88M	100	1.1	110	83.8
LocalMIM-Pixel	Swin-B	88M	400	1.0	400	84.0
LocalMIM-HOG	Swin-B	88M	400	1.1	440	84.1
LocalMIM-HOG	Swin-L	197M	800	1.6	1280	85.6

Figure: Top-1 fine-tuning accuracy on ImageNet-1K.

2. Segmentation and Detection

Model	PT Epoch	PT Hours	mIoU					
Supervised	-	-	47.4					
MoCo v3 [12]	300	-	47.3					
BEiT [2]	800	1920	47.1	Madal	DT Encoh	DT House	A Db	
MAE [24]	1600	1760	48.1	Model	PI Epoch	P1 Hours	AP	P
MaskFeat [57]	1600	6240	48.8	Supervised	300	840	48.5	4
PeCo [17]	800	-	48.5	SimMIM ₁₉₂ [60]	800	1440	50.4	4
CAE [11]	800	2240	48.8	GreenMIM [31]	800	640	50.0	4
LocalMIM-HOG	1600	1120	49.5	LocalMIM-HOG	400	440	50.7	4

Figure: Semantic segmentation on ADE20K

Figure: Object detection and instance segmentation on COCO

1. LocalMIM significantly outperforms supervised pre-training. 2. LocalMIM achieves better performance than other MIM models with less pre-training burden.

3. Visualization of the attention maps

1) For object-centric images, LocalMIM can distinguish the foreground object from the background.

2) For multi-object images, LocalMIM can effectively separate different objects without any task-specific supervision, which means the attention maps are query-adaptive.

3) The patches at lower layers typically more focus on their neighboring regions, while those at upper layers attend to a wide range of semantically related regions.

Input

2-th 4-th 10-th 12-th Figure: Visualization of the attention maps for different query points, marked with red boxes.

4. Gradient-isolated pre-training

model	backbone	GPU Hours/Ep.	acc
LocalMIM	VIT D	0.7	83.3
w/ isolated grad	VII-D	0.7	83.0
LocalMIM	Swin D	1.1	83.8
w/ isolated grad	Swill-D	1.1	83.7

Surprisingly, the gradient-isolated training achieves similar performance to global back-propagation.

Thank you!

Paper:<u>https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_Masked_Image_Modeling_With_Local_Mu</u> <u>lti-Scale_Reconstruction_CVPR_2023_paper.pdf</u>

Code: https://github.com/huawei-noah/Efficient-Computing/tree/master/Self-supervised/LocalMIM