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1.2 Problem in One-Shot NAS

- Prombel : shared weights suffer from different gradient descent directions Supernet Training

« Available solutions :
« Elaborate a better path sampling strategy

« FairNAS [ICCV'21], Magic-AT [ICML'22]

* Maintain multi-copies of supernet weights

« Few-Shot-NAS [ICML'21], GM [ICLR’22], CLOSE [ECCV’22] :Z—‘
« Introduce additional loss regularizations Q
« NSAS [CVPR’20] , SUMNAS [ICLR’22], Magic-AT [ICML'22]

« Drawbacks : require multiple computation burdens and obtain

unsatisfying results f Z

» Motivate us to explore a better solution.
Supernet N
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2.1 Observations
« Kendall’s Tau (KT): we calculate the correlation between predicted scores and ground-truth scores of sub-models,
to indicate the ranking consistency of sub-models.

« Gradient Variance (GV): we record the average GV of all candidate operation weights during training
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« With more sub-models sharing weights, GV increases and KT becomes worse

« When using different methods, GV decreases and KT becomes better

* Prompts: reduce GV to improve the ranking consistency KT.
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2.1 Observations
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Figure 1: Nonpriority and priority training examples for image classification. Left: Examples
that RAIS samples infrequently during training. Right: Examples that RAIS prioritizes. Bold denotes

the image’s label. Parentheses denote a different class that the model considers likely during training.
Datasets are CIFAR-10 (top), CIFAR-100 (middle), and rotated MNIST (bottom).
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» Inspiration from RAIS [NeurlPS’18]: better data sampling strategy can reduce the gradient variance of model training,

thereby improving the generalization of the model.
ANS@ 7D
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2.2 Traditional Sampling-based One-Shot NAS

Path Uniform Sampling Supernet Training
Sampling § 2 _M Vi
Vn
Supernet N a1 ~ p(A) as ~ p(A ~ p(A)

Data Uniform Sampling i ;
Train N
Sampling > Z

Training Data Dy (z1,91) ~a@r) (z2,92) ~a(Dr)  (zn,yn) ~ a(Dr) Supernet N

« Stage 1: Supernet Training « Stage 2: Sub-model Search

W* = argmin K a~p(A) [ﬁ(N(CB, Qs Wa), y)] (D o — — argmax E(:E y)~q(Dy ) [P(N(IIZ, Qs Wc:)a y)] (2)
W (zy)~a(Dr) eyt
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2.3 Importance Sampling One-Shot NAS

PAth Importance Sampling (PA) Supernet Training
Train N

Samplin

i o O<iv2 O O
«——
Update p

Supernet N a; ~ p(A
DAta Importance Sampling (DA) §

Train NV
Sampling e g
%
Update q

(z1,91) ~a(Dr)  (22,92) ~a(D1)  (%n,yn) ~ a(Dr) Supernet N

Training Data DDy

W* = argmin E[L(N (z, a; Wa), y)]
» Formulation of our objective: jointly optimize path and w

( ~ * A , , 3 * D &
data sampling distribution during supernet training. a~pA), [&y) ~qDr) 3)

s.t. { p* = argminV[d(p)],
p
q* = argminV/[d(q)]

7 \ q
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2.3 Importance Sampling One-Shot NAS

« Supernet training in sampling-based one-shot NAS

W* = argmin E a~p(A) [/.:(N(l’, Qs Wa)a y)] (D
VY, (m7y)Nq(DT)

« PA&DA-Jointly optimize path and data sampling distribution during training:

W* = argmin E[L(N (z, a; Wy), y)]
W
[ a~p*(A), (z,y) ~ ¢*(Dr),

3)
s.t. ¢ p* = argminV|[d(p)],
p

q* = argminV|d(q)]
\ q
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2.4 PAth Importance Sampling (PA)

PAth Importance Sampling (PA) « Reformulate the problem in Eq.6 as a constrained

optimization problem:

N
; 1 1
mp}n E N2 ||VWE(N(3717 ai; Wa,), yz)”2
i=1
a1 ~ p(A) ay ~ p(A) an ~ p(A)

st.) pi=1 and p; >0 Vi=1,2,...N
71—

» At i-th training step, the stochastic gradient is: .
: g step d « Use the Lagrange multiplier method to solve the

optimal path sampling distribution:

N (N(xiaai;wai)7yi) (5)
: Zfil ”VW‘C(N(:EM 873 Waz’)a yz)“

di(pi) =

* Introduce the gradient to our objective:

minV[d(p)] _E [de] _E [d]T E [d] 6) « Conclusion: the optimal p; is proportional to the

p normalized gradient norm of the sub-model.
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2.5 DAta Importance Sampling (DA)

DAta Importance Sampling (DA)

(1,91) ~a(Dr)  (22,92) ~a(Dr)  (Zn,ya) ~ a(Dr)

« According to previous works, the optimal data

sampling distribution q; is given by:

g < [[VWLN (i, i3 W), 1) | (11)

10

In mini-batch training, it is time-consuming and laborious
to compute per-sample gradient norm. Thereby we use the

Upper-bound [ICML’18] method to approximate:
sup{ | Vw LN (@, 2i; Wa, ), ui) I} < VLl (12)

For image classification with a cross-entropy loss, the

approximated upper bound is:

V1 = softmax(yr) — 1(y;) (13)

In this way, we can efficiently approximate the gradient

norm of each sample via a batch-wise mannar.

ANS®@ @
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2.6 Supernet training in practice

Algorithm 1 Supernet training algorithm of PA&DA

Input: Input training data D7, supernet N/ with weights W, _ o
training epochs 7epochs, training steps nsteps per epoch. « Update the path sampling distribution after each epoch.
Output: Optimized supernet weights YW*.

« Path importance sampling:

« To handle those parameter-free operations, employ a

1: for j = 110 nepochs do

2 for £ = 1 t0 ngteps do smoothing parameter 6 to add path importance sampling

3 Sample a path based on the distribution p(.A); L : : e

i Sample a mini-batch training data based on the distribution and the uniform sampling distribution together.
distribution q(Dr);

5% Train supernet weights VV by gradient descent; _ _

6: Record gradient norm of the sampled path after  Data importance sampling:
back-propagation; . . e

5 A mate and: eord gradient norm of e Update the data sampling distribution after each epoch.
sampled data using Eq.13. « To handle those data not sampled in the current epoch,

8: end for

9: Linearly increase smoothing parameters ¢ and 7; employ a smoothing parameter 7 to add data importance

10: Update the path sampling distribution p(.A) accord-
ing to Eq.10 and add it to uniform distribution;

11 Update the data sampling distribution q(D7) ac-
cording to Eq.11 and add it to uniform distribution;

12: end for

sampling distribution and the uniform sampling distribution.
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3 Experiments

3.1 Ranking Consistency in NAS-Bench-201 using CIFAR-10

Method Cost KT P@Top5% 0.70 a

SPOS [16] 1.6 0.639£0.030 0211+0.168

FairNAS' [7] 54 0.541+£0.023 0.160 £ 0.034 ® Magic-AT

Magic-AT! [46] 44  0.547+0.059 0.019 +0.011 "1 e spos ~
NSAS [4¢] 146  0.653 +£0.051 0.064 £ 0.028 = DA

SUMNAS' [17] ~ 22.6 0.505+0.039 0.145 £ 0.061 ol GICS

Few-Shot-25 [51]  18.6 0.696 - e

GM'-8 [1¢] 18.0  0.656 +£0.011 0.153 = 0.006 PA

CLOSE [52] 2.5 0.643£0.050 0.031 % 0.021 055 * PA&DA

PA&DA 1.8 0.713+0.002 0.301 = 0.018 2.0 2.5 3.0 3.5

* PA&DA only consumes 1.8 GPU hours and reaches
the highest KT and P@Top5%.

GV (X le-5)

« Supernet trained by PA&DA has the lowest
GV and the highest KT.
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3.2 Search performance in DARTS using CIFAR-10

Method Test Accuracy Parameters Search Cost Search
Best(%)  Average(%) M) (GPU Days) Method
NASNet-A [59] 97.35 - 3.3 1,800 RL
ENAS [34] 97.11 - 4.6 0.5 RL
DARTS [30] - 97.00 + 0.14 33 0.4 Gradient
GDAS [14] 97.07 - 34 0.3 Gradient
RandomINAS [28] - 97.15 £+ 0.08 4.3 2.7 Random
DARTS-PT [46] 97.52 97.39 + 0.08 3.0 0.8 Gradient
BaLeNAS [54] - 97.50 + 0.07 3.8 0.6 Gradient
AGNAS [42] 97.54 97.47 £+ 0.003 3.6 0.4 Gradient
ZARTS [47] - 97.46 4+ 0.07 T 1.0 Gradient
GDAS-NSAS [53] 97.27 - 3.5 0.4 Gradient
RandomNAS-NSAS [53] 97.36 - 3.1 0.7 Random
Few-Shot-NAST [56] 97.42 97.37 £ 0.06 3.8 2.8 Gradient
GM [20] 97.60 97.51 4+ 0.08 3.7 2.7 Gradient
CLOSE [57] - 97.28 £+ 0.04 4.1 0.6 Gradient
PA&DA 97.66 97.52 £+ 0.07 3.9 04 Random

Table 2. Comparison with other state-of-the-art methods on the CIFAR-10 dataset using DARTS search space. We report the best and
average test accuracy of repeated experiments.': reported by GM [20].

« PA&DA only consumes 0.4 GPU days and achieves the best performance.
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3.2 Searched architectures in DARTS using CIFAR-10

sep_conv_3x3

c{k-2} |_avg_pool_3x3 ]

sep_conv_3x3

sep_conv_5x5

skip_connect »

avg_pool_3x3 <

(a) Normal Cell

_conv_5x5

sep_conv_3x3 sep_conv_3x3 _ n

skip_connect |

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3 dil_conv_5x5 i
sep_conv_5x5 - '

(c) PA&DA-2 (normal cell)

n avg_pool_3x3
avg

skip_connect = n

(b) Reduction Cell

* As pointed out in Cell-based-NAS-Analysis [ICLR'22],
such a ResNet-style residual link is helpful for achieving
the SOTA performance.

¥ dil_conv_5x5 a
c_{k-2} Q avg_pool_3x3 H
none ’

max_pool_3x3

(b) PA&DA-1 (reduction cell)

max_pool_3x3 - n

dil_conv_3x3 > n
avg_pool_3x3
avg_pool_3x3 2

(d) PA&DA-2 (reduction cell)
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3.3 Search performance in ProxylessNAS on ImageNet

Params. FLOPs Top-1 Top-5

ictio ™M M (B (%)
AmoebaNet-A [35] 5.1 555 74.5 92.0
MnasNet-A1l [43] 3.9 312 75.2 92.5
PNAS [29] 5.1 588 74.2 91.9
TNASP-C [32] 5.3 497 75.8 92.7
DA-NAS [12] - 389 74.6 -
SPOS [1£] 54 472 74.8 =
FBNet-C [45] 5.5 375 74.9 -
ProxylessNAS [4] 7.1 465 75.1 92.3
FairNAS-A [9] 4.6 388 75.3 -
MAGIC-AT [50] 6.0 598 76.8 93.3
Few-Shot NAS [56] 49 521 75.9 -
GM [20] 49 530 76.6 93.0
PA&DA 5.3 399 77.3 93.5

Table 3. Comparison with other state-of-the-art methods on the
ImageNet dataset using the ProxylessNAS search space.

« PA&DA obtains the SOTA performance while using similar FLOPs.
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« Conclusion
» In this paper, we observe that large gradient variance during supernet training harms the ranking consistency.

« Then we derive the relationship between the gradient variance and the sampling distributions.
« Finally, we reduce the gradient variance for the supernet training by jointly optimizing the path and data sampling

distributions to improve the supernet ranking consistency.

e Future Work

« Explore more effective metrics for data importance.

« Concentrate more on sub-models located in the Pareto-front, rather than exhaustively evaluate all sub-models.
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