

**THU-PM-193** 

## Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos

Yubin Hu<sup>1</sup>, Yuze He<sup>1</sup>, Yanghao Li<sup>1</sup>, Jisheng Li<sup>1</sup>, Yuxing Han<sup>2</sup>, Jiangtao Wen<sup>3</sup> and Yong-jin Liu<sup>1</sup>











• Video semantic segmentation (VSS) is a **computationally expensive** task.



Segmentation results of PSPNet (ResNet-18).

#### Overview

- Video semantic segmentation (VSS) is a **computationally expensive** task.
  - We propose to reduce the GLOPs by altering the input resolution.



HR keyframe

HR keyframe

#### Overview

- Video semantic segmentation (VSS) is a **computationally expensive** task.
  - We propose to reduce the GLOPs by **altering the input resolution**.
  - The presented AR-Seg reduces 60% GFLOPs while maintaining the accuracy.

|          | Method     | PSPNet   | :18 [ <mark>55</mark> ] | BiseNet18 [52] |         |  |
|----------|------------|----------|-------------------------|----------------|---------|--|
|          | Methou     | mIoU(%)↑ | $GFLOPs \downarrow$     | mIoU(%)↑       | GFLOPs↓ |  |
| CamVid   | 1.0x       | 69.43    | 309.02                  | 71.57          | 58.83   |  |
|          | $AR^{0.7}$ | 71.23    | 169.86                  | 71.78          | 31.89   |  |
|          | $AR^{0.6}$ | 70.82    | 133.09                  | 71.60          | 24.68   |  |
|          | $AR^{0.5}$ | 70.48    | 101.98                  | 70.38          | 18.96   |  |
| Ses      | 1.0x       | 69.00    | 560.97                  | 70.09          | 178.96  |  |
| Cityscap | $AR^{0.7}$ | 70.23    | 302.95                  | 70.86          | 97.10   |  |
|          | $AR^{0.6}$ | 69.45    | 234.91                  | 70.72          | 76.06   |  |
|          | $AR^{0.5}$ | 69.03    | 177.44                  | 70.57          | 57.00   |  |

#### Overview

- Video semantic segmentation (VSS) is a **computationally expensive** task.
  - We propose to reduce the GLOPs by altering the input resolution.
  - The presented AR-Seg reduces 60% GFLOPs while maintaining the accuracy.
  - Our utilization of motion vectors can be adopted to other applications related to compressed videos.



#### Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos

**More Details** 

## Background

- Video semantic segmentation (VSS) is a computationally expensive task.
  - Applying image-based models is expensive. 😤
  - Compact image-based or temporally varying models are proposed.
  - What about improving efficiency from the input side ?



#### Motivation

- They ignored a crucial factor from the input side: the input resolution.
  - The input resolution determines the amount of computation for image-related tasks.
  - E.g. 0.5x0.5 down-sampling reduces the cost of convolution by 75%.
- Process keyframes in **high-resolution** and non-keyframes in **low-resolution**.
  - With temporal correlation, the performance drop in LR frames can be mitigated by HR frames.







LR non-keyframe









LR non-keyframe

HR keyframe

HR keyframe

## Motivation

- How to use the temporal correlation and improve the accuracy of LR frames?
  - Aggregate the HR features into LR frames. 😔
  - Spatial misalignment for frames at different timesteps.
  - Guide the feature aggregation with some motion cues. 🥲
    - Optical flow can provide such motion cues. But expensive. 😤
    - Most videos are compressed by video encoders, e.g. H.264, H.265, AV1.
    - Motion vectors in the compressed videos can also provide such motion cues. With almost no cost.







Keyframe

Motion vectors

## Method

- We propose an efficient framework, AR-Seg, for VSS of compressed videos.
  - It alters the input resolution of video frames to reduce the computational cost.  $^{\it ee}$
  - And maintains the overall segmentation accuracy.  $\heartsuit$



Comparison between AR-Seg and existing methods.

The overall pipeline of AR-Seg.

#### Method

- The proposed cross resolution feature fusion (CReFF) module.
  - Fuse the information inside HR features into the LR branch.
  - 1. Warp the HR feature using motion vectors.
  - 2. Aggregate the warped features with local attention mechanism.



The cross resolution feature fusion (CReFF) module.

#### Method

- The proposed feature similarity training (FST) strategy.
  - Guide the aggregated features in the LR branch.
  - 1. An explicit constraint: feature similarity loss.
  - 2. An **implicit** constraint: the shared decoding laver.



The CReFF module in the network architecture and feature similarity training (FST) strategy.

• Comparison with image-based methods. L=12.



Table 1. Comparison to the image-based methods on CamVid *test* set and Cityscapes *valid* set.

|          | Method     | PSPNet   | t18 [ <mark>55</mark> ] | BiseNet18 [52] |         |  |
|----------|------------|----------|-------------------------|----------------|---------|--|
|          | Method     | mIoU(%)↑ | $GFLOPs \downarrow$     | mIoU(%)↑       | GFLOPs↓ |  |
| CamVid   | 1.0x       | 69.43    | 309.02                  | 71.57          | 58.83   |  |
|          | $AR^{0.7}$ | 71.23    | 169.86                  | 71.78          | 31.89   |  |
|          | $AR^{0.6}$ | 70.82    | 133.09                  | 71.60          | 24.68   |  |
|          | $AR^{0.5}$ | 70.48    | 101.98                  | 70.38          | 18.96   |  |
| Sec      | 1.0x       | 69.00    | 560.97                  | 70.09          | 178.96  |  |
| Cityscal | $AR^{0.7}$ | 70.23    | 302.95                  | 70.86          | 97.10   |  |
|          | $AR^{0.6}$ | 69.45    | 234.91                  | 70.72          | 76.06   |  |
|          | $AR^{0.5}$ | 69.03    | 177.44                  | 70.57          | 57.00   |  |

Table 5. Running time of AR-PSP18 on 720x960 CamVid and 1024x2048 Cityscapes datasets.

| Dataset    | 1.0x baseline   | $AR^{0.5}$      | $AR^{0.3}$      |
|------------|-----------------|-----------------|-----------------|
| CamVid     | 31.2 ms (32fps) | 14.7 ms (68fps) | 9.0 ms (111fps) |
| Cityscapes | 95.4 ms (10fps) | 30.7 ms (33fps) | 19.9 ms (50fps) |

- Comparison with video-based methods.
  - AR-Seg is the only method that saves computation and maintains accuracy.
  - $\tilde{\Delta}GFLOPs \leq 0 \& \tilde{\Delta}mIoU \geq 0$

|            |                            | Single-fr          | Video approach |                     |              |                     |                                      |                                              |
|------------|----------------------------|--------------------|----------------|---------------------|--------------|---------------------|--------------------------------------|----------------------------------------------|
|            | Method                     | Backbone           | mIoU(%)↑       | GFLOPs $\downarrow$ | mIoU(%)↑     | GFLOPs $\downarrow$ | $\widetilde{\Delta}$ mIoU $\uparrow$ | $\widetilde{\Delta} 	ext{GFLOPs} \downarrow$ |
|            | Accel-DL18 [10]            | DeepLab18 [3]      | 58.13          | 245.65              | 66.15        | 397.70              | +13.8%                               | +61.9%                                       |
|            | TD <sup>4</sup> -PSP18 [8] | PSPNet18 [23]      | 69.43          | 309.02              | 70.13        | 363.70              | +1.0%                                | +17.7%                                       |
| /id        | BlockCopy [18]             | SwiftNet-RN50 [13] | 70.41          | <u>215.90</u>       | 66.75        | 107.52              | -5.2%                                | -45.7%                                       |
| m          | TapLab-BL2 [6]             | MobileNetV2 [16]   | 69.93          | 236.40              | 67.57        | 117.73              | -3.1%                                | -50.2%                                       |
| Ca         | Jain et al. [9]            | DeepLab50 [3]      | 70.65          | 318.12              | 67.61        | 146.97              | -4.3%                                | -53.8%                                       |
|            | AR <sup>0.6</sup> -PSP18   | PSPNet18 [23]      | 69.43          | 309.02              | 70.82        | 101.98              | +2.0%                                | -57.0%                                       |
|            | AR <sup>0.6</sup> -Bise18  | BiseNet18 [22]     | 71.57          | 58.83               | 71.60        | 24.68               | +0.0%                                | -58.0%                                       |
| Cityscapes | Accel-DL18 [10]            | DeepLab18 [3]      | 57.64          | 516.20              | 68.25        | 1011.75             | +18.4%                               | +96.0%                                       |
|            | TD <sup>4</sup> -PSP18 [8] | PSPNet18 [23]      | 69.00          | 560.97              | <u>70.11</u> | 673.06              | +1.6%                                | +20.0%                                       |
|            | BlockCopy [18]             | SwiftNet-RN50 [13] | 72.47          | 500.35              | 67.69        | 294.20              | -6.7%                                | -41.2%                                       |
|            | TapLab-BL2 [6]             | MobileNetV2 [16]   | 71.85          | <u>480.34</u>       | 68.90        | 237.29              | -4.1%                                | -50.6%                                       |
|            | Jain et al. [9]            | DeepLab50 [3]      | 72.26          | 721.41              | 68.57        | 342.67              | -5.1%                                | -52.5%                                       |
|            | AR <sup>0.6</sup> -PSP18   | PSPNet18 [23]      | 69.00          | 560.97              | 69.45        | 234.91              | +0.7%                                | -58.1%                                       |
|            | AR <sup>0.6</sup> -Bise18  | BiseNet18 [22]     | 70.09          | 178.96              | 70.72        | 76.06               | +0.9%                                | <u>-57.5%</u>                                |

• The design of CReFF and FST, and the keyframe interval.

| Experiment           | Method                                                     | mIoU(%) | GFLOPs             | Experiment | Method                                                       | mIoU(%) | GFLOPs |
|----------------------|------------------------------------------------------------|---------|--------------------|------------|--------------------------------------------------------------|---------|--------|
| Baseline             | PSPNet18 (1.0x)                                            | 69.43   | 309.02             | Baseline   | PSPNet18 (1.0x)                                              | 69.43   | 309.02 |
|                      | PSPNet18 (0.5x)                                            | 66.51   | 77.27              |            | PSPNet18 (0.5x)                                              | 66.51   | 77.27  |
|                      | $+\mathcal{W}_{MV}+\mathcal{F}_{LA}(7x7)$                  | 70.48   | 70.48 101.98 Featu |            | + MSE Loss + Shared $C_{1 \times 1}$                         | 70.48   | 101.98 |
|                      | w/o CReFF                                                  | 67.14   | 96.60              | Similarity | w/o FST                                                      | 69.21   | 101.98 |
|                      | + $\mathcal{W}_{MV}$                                       | 57.64   | 25.75              | Training   | + Shared $C_{1 \times 1}$                                    | 69.57   | 101.98 |
| Architacture         | $+\mathcal{F}_{LA}$ (7x7)                                  | 67.93   | 101.98             | (FST)      | + MSE Loss                                                   | 70.17   | 101.98 |
| of CReFF             | $\mathcal{F} + \mathcal{W}_{MV} + \mathcal{F}_{LA} $ (3x3) | 70.30   | 98.74              |            | + KL Loss + Shared $C_{1 \times 1}$                          | 68.91   | 101.98 |
| of CREPT             | + $\mathcal{W}_{MV}$ + $\mathcal{F}_{LA}$ (11x11)          | 70.48   | 107.32             |            | $\Delta R^{0.5} - PSP18 I - 12$                              | 70 48   | 101 98 |
|                      | + $\mathcal{W}_{MV}$ + $\mathcal{F}_{LA*}$ (7x7)           | 69.99   | 170.96             | Keyframe   | $\frac{AR}{AB^{0.5}} \frac{-15110}{25018} \frac{1-12}{1-15}$ | 70.40   | 07.88  |
|                      | + $W_{MV}$ + $F_{GA}$ (1/32)                               | 67.11   | 113.58             | Interval   | AR = -FSF10, L=13<br>$AP^{0.5} PSP19 L=20$                   | 70.20   | 97.00  |
|                      | + $\mathcal{W}_{MV}$ + $\mathcal{F}_{Conv}$                | 70.45   | 143.63             | milervar   | AR -FSF10, $L=20$                                            | 10.28   | 94.11  |
|                      | + CReFF w/o DC                                             | 69.14   | 101.98             | -          | AR***-PSP18, L=30                                            | 09.07   | 90.34  |
| Location<br>of CReFF | before $C_{1 \times 1}$                                    | 70.48   | 101.98             |            |                                                              |         |        |
|                      | before $\overline{N_{task}}$                               | 68.60   | 214.76             |            |                                                              |         |        |
|                      | before $N_{feat}$                                          | 68.31   | 308.46             |            |                                                              |         |        |

Ablation experiments on CamVid dataset with PSPNet18. Settings used in our final model are underlined.

- About the local attention mechanism.
  - 1. It corrects the wrong features in  $\overline{F}_P$ .



- About the local attention mechanism.
  - 1. It corrects the wrong features in  $\overline{F}_P$ .
  - 2. It complements the missing features in  $\overline{F}_P$ .



- About the local attention mechanism.
  - 1. It corrects the wrong features in  $\overline{F}_P$ .
  - 2. It complements the missing features in  $\overline{F}_P$ .
  - 3. It resists the misleading features from  $\hat{F}_{I}$ .



#### Future Work

- More adaptive adjustment with more resolution levels.
- Experiments with more segmentation backbones.
- Apply the similar idea to other video-related applications.
  - Object tracking, instance segmentation, etc.
  - Utilize the existing information inside the compressed videos.

• • • •

# Thanks



Code

