

#### 3D-Aware Multi-Class Image-to-Image Translation with NeRFs

Senmao Li<sup>1</sup> Joost van de Weijer<sup>2</sup> Yaxing Wang<sup>1\*</sup> Fahad Shahbaz Khan<sup>3,4</sup> Meiqin Liu<sup>5</sup> Jian Yang<sup>1</sup> <sup>1</sup>VCIP,CS,Nankai University, <sup>2</sup>Universitat Auto noma de Barcelona, <sup>3</sup>Mohamed bin Zayed University of AI, <sup>4</sup>Linkoping University, <sup>5</sup>Beijing Jiaotong University

> Paper ID 81 Code: <u>https://github.com/sen-mao/3di2i-translation</u>

### Problems



- **No prior works** investigate 3D-aware GANs for 3D consistent multi-class image-to-image (3D-aware I2I) translation.
- Delta 2D-I2I translation methods applied to 3D-I2I translation tasks result in three main challenges (1. underestimating viewpoint changes, 2.

identity change, 3. a geometrically unrealistic ear) when changing the viewpoint.





• We decouple the learning process into multi-class 3D-aware generation (step1) and 3D-aware I2I translation (step2).





**step1**: (1) training an unconditional 3D-aware generative model on datasets (i.e., StyleNeRF) and (2) partially initializing the multi-class 3D-aware generative model (i.e., multi-class StyleNeRF).





**step1**: (1) training an unconditional 3D-aware generative model on datasets (i.e., StyleNeRF) and (2) partially initializing the multi-class 3D-aware generative model (i.e., multi-class StyleNeRF).





**step2**: 3D-aware I2I translation architecture adapted from the trained multi-class StyleNeRF (**step1**). This initialization inherits the capacity of being sensitive of view information.





step2: 3D-aware I2I translation architecture adapted from the trained multi-class StyleNeRF (step1). This initialization inherits the capacity of being sensitive of view information.



• The generated images of step1 (top) and step2 (bottom), which show

that we correctly align the outputs of both the NeRF mode F and the

adaptor A.





• several techniques for **step2**: relative regularization loss and hierarchical representation constrain



relative regularization loss



hierarchical representation constrain

### Inference time



**inference**: the 3D image (e.g. female) is fed into the trained encoder E, and through the adaptor A and generator G, it is eventually translated into other categories of 3D image (e.g. male).



# Ablation study



multi-class StyleNeRF (step1) training from scratch (top) causes artifact and mode collapse.





Multi-class StyleNeRF (from scratch)



Muti-class StyleNeRF (Ours, initialize by StyleNeRF)

## Ablation study



Both using a single mapping network (left) and using two mapping networks without concatenating (right) fails to generate satisfactory results.



## Ablation study



Comparison with baselines.\* denotes that we used the results provided by StarGANv2. + means that we used the pre-trained networks provided

by authors.

| Dataset   |  | CelebA-HQ |      | AFHQ   |      |
|-----------|--|-----------|------|--------|------|
| Method    |  | TC↓       | FID↓ | TC↓    | FID↓ |
| *MUNIT    |  | 30.240    | 31.4 | 28.497 | 41.5 |
| *DRIT     |  | 35.452    | 52.1 | 25.341 | 95.6 |
| *MSGAN    |  | 31.641    | 33.1 | 34.236 | 61.4 |
| StarGANv2 |  | 10.250    | 13.6 | 3.025  | 16.1 |
| Ours (3D) |  | 3.743     | 22.3 | 2.067  | 15.3 |

|                     | TC↓    | (unc)FID↓ | TC↓   | (unc)FID↓ |
|---------------------|--------|-----------|-------|-----------|
| †Liu et al. [35]    | 13.315 | 17.8      | 3.462 | 20.0      |
| StarGANv2           | 10.250 | 12.2      | 3.025 | 9.9       |
| †Kunhee et al. [24] | 10.462 | 6.7       | 3.241 | 10.0      |
| Ours (3D)           | 3.743  | 18.7      | 2.067 | 11.4      |

Impact of several components in the performance on AFHQ. Ini.: initialization method for multi-class StyleNeRF, Ada.: Unet-like adaptor, Hrc.:

Hierarchical representation constrain, Rrl.: Relative regularization loss.

| Ini. | Ada. | Hrc. | Rrl. | TC↓   | FID↓ |
|------|------|------|------|-------|------|
| Y    | Ν    | Ν    | Ν    | 2.612 | 23.8 |
| Y    | Y    | Ν    | Ν    | 2.324 | 23.1 |
| Y    | Y    | Y    | Ν    | 2.204 | 16.1 |
| Y    | Y    | Y    | Y    | 2.067 | 15.3 |

### Results



Our approach produces consistent results across viewpoints (up and bottom, left). User study (bottom, right). 



Output (female)





#### Results



• More results of 3D-aware I2I translation of **female into male (top)** and **male into female (bottom)** on Celeba-HQ 1024×1024







We are the first to explore 3D-aware multi-class I2I translation, which allows generating 3D consistent videos.

We decouple 3D-aware I2I translation into two steps. Step1: we propose a multi-class StyleNeRF. To train this multi-class StyleNeRF effectively, we provide a new training strategy. Step2: we propose a 3D-aware I2I translation architecture.

 To further address the view-inconsistency problem of 3D-aware I2I translation, we propose several techniques: (1) a unet-like adaptor, (2) a hierarchical representation constraint and (3) a relative regularization loss.