
Background
 Visual place recognition (VPR): a large-scale image retrieval problem.
 Image representations for the VPR pipeline:

Insight
 Segmentation images have rich structural knowledge, which is essential for VPR.
 The left one shows the scene with illumination variation, and segmentation images

are more recognizable; The right one shows the scene with changing perspectives,
and RGB images are more recognizable.

Contributions
We propose StructVPR, distilling the high-quality knowledge from the SEG modality
to the RGB modality and avoiding the computation and inference of segmentation
during testing.
 Segmentation images are pre-encoded into weighted one-hot label maps to extract

structural information for VPR.
 StructVPR forges a connection between sample partition and weighted knowledge

distillation for each sample.
 Low computational time and memory requirements for real-world applications
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Weighted Knowledge Distillation
 We define a function to refine the weights on samples from two perspectives. One

is the knowledge levels of the teacher on each sample; the higher the knowledge
level, the greater the weight. Another is the knowledge gap between the teacher
and the student; the greater the gap, the greater the weight.

 We adopt feature-based distillation loss in second-stage training.

Methodology

Segmentation Label Map Encoding

Group Partition
 Not all samples contain high-quality and helpful

teacher knowledge for the student, and even
some will hurt the student’s performance.

 we let the two pre-trained branches participate in
seeking a more accurate partition.

Comparison with SOTA

Latency & Memory

Visualizations of VPR results

Results

Ablation study of distillation
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 SLME including three steps: formatting,
clustering, and weighting.

 Too fine-grained segmentation will
interfere with VPR like noises.

 Each semantic class plays a different
role in VPR task.
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