

新孝文通大学 StructVPR: Distill Structural Knowledge by Weighting Samples for Visual Place Recognition June 18-22, 2023 首

Introduction

Background

- \succ Visual place recognition (VPR): a large-scale image retrieval problem.
- Image representations for the VPR pipeline:

descriptors

Insight

- > Segmentation images have rich structural knowledge, which is essential for VPR.
- \succ The left one shows the scene with illumination variation, and segmentation images are more recognizable; The right one shows the scene with changing perspectives, and RGB images are more recognizable.

Contributions

We propose StructVPR, distilling the high-quality knowledge from the SEG modality to the RGB modality and avoiding the computation and inference of segmentation during testing.

- > Segmentation images are pre-encoded into weighted one-hot label maps to extract structural information for VPR.
- > StructVPR forges a connection between sample partition and weighted knowledge distillation for each sample.
- > Low computational time and memory requirements for real-world applications

Yanqing Shen, Sanping Zhou, Jingwen Fu, Ruotong Wang, Shitao Chen, Nanning Zheng National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University

Methodology

Weighted Knowledge Distillation

- \blacktriangleright We define a function to refine the weights on samples from two perspectives. One is the knowledge levels of the teacher on each sample; *the higher the knowledge level, the greater the weight.* Another is the knowledge gap between the teacher and the student; the greater the gap, the greater the weight.
- \blacktriangleright We adopt feature-based distillation loss in second-stage training.

Comparison with SOTA

	Mathad		MSLS val		MSLS challenge			Nordland test			Pittsburgh30k test			
Method		venue	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
Global retrieval	NetVLAD [1]	CVPR'16	53.1	66.5	71.1	28.6	38.3	42.9	11.5	17.6	21.9	81.9	91.2	93.7
	SFRS [15]	ECCV'20	58.8	68.2	71.8	30.7	39.3	42.9	14.3	23.1	27.3	71.1	81.0	84.9
	DELG [6]	ECCV'20	68.4	78.9	83.1	37.6	50.5	54.6	27.0	43.3	50.0	79.0	89.0	92.7
	Patch-NetVLAD-s [20]	CVPR'21	63.5	76.5	80.1	36.1	49.9	55.0	18.1	33.2	41.1	81.3	91.1	93.4
	Patch-NetVLAD-p [20]	CVPR'21	70.0	80.4	83.8	38.1	51.2	55.3	24.8	39.4	48.0	83.7	<u>91.8</u>	<u>94.0</u>
	TransVPR [51]	CVPR'22	70.8	85.1	<u>89.6</u>	<u>48.0</u>	<u>67.1</u>	<u>73.6</u>	<u>31.3</u>	<u>53.6</u>	<u>64.8</u>	73.8	88.1	91.9
	(A) Ours		83.0	91.0	92.6	64.5	80.4	83.9	56.1	75.5	82.9	85.1	92.3	94.3
Re-ranking	SP-SuperGlue [10,43]	CVPR'20	78.1	81.9	84.3	50.6	56.9	58.3	37.9	41.2	42.6	87.2	94.8	96.4
	DELG [6]	ECCV'20	83.9	89.2	90.1	56.5	65.7	68.3	64.4	70.8	72.7	<u>89.9</u>	<u>95.4</u>	96.7
	Patch-NetVLAD-s [20]	CVPR'21	77.2	85.4	87.3	48.1	59.4	62.3	50.9	62.7	66.5	88.0	94.5	95.6
	Patch-NetVLAD-p [20]	CVPR'21	79.5	86.2	87.7	51.2	60.3	63.9	62.7	71.0	73.5	88.7	94.5	95.9
	TransVPR [51]	CVPR'22	86.8	91.2	92.4	63.9	74.0	77.5	<u>77.8</u>	<u>86.8</u>	89.3	89.0	94.9	96.2
	(B) Ours-SP-RANSAC		87.3	91.4	<u>92.8</u>	65.5	76.3	<u>81.3</u>	76.8	86.3	<u>90.1</u>	89.4	95.2	96.5
	(B) Ours-SP-SuperGlue		88.4	94.3	95.0	69.4	81.5	85.6	83.5	93.0	95.0	90.3	96.0	97.3

Latency & Memory

Visualizations of VPR results

Results

Ablation study of distillation

-									
	Group for	Sample		MSLS v	al	MSLS challenge			
	distillation	ratio	R@ 1	R@5	R@10	R@ 1	R@5	R@10	
	None	0%	75.8	85.3	87.3	55.1	71.9	76.4	
DELG*	All	100%	78.4	87.4	90.1	59.1	73.5	79.3	
	${\mathcal D}_1$	4.11%	78.8	<u>89.2</u>	91.1	62.3	76.8	80.9	
	\mathcal{D}_2	50.67%	80.0	88.8	90.6	59.1	75.5	79.3	
Patch-NetVLAD-p	\mathcal{D}_3	14.77%	77.7	87.4	89.2	57.8	74.4	79.1	
•	\mathcal{S}_1	69.55%	<u>81.6</u>	88.9	<u>91.2</u>	<u>62.2</u>	<u>77.2</u>	<u>82.0</u>	
	$\mathcal{S}_2(\mathcal{D}_4)$	30.45%	71.6	83.7	85.1	48.2	63.9	68.7	
	\mathcal{R}_1	73.24%	79.3	87.6	88.9	57.0	74.1	78.2	
30 40 50 cy (s)	\mathcal{R}_2	26.76%	73.8	82.7	85.6	51.0	67.0	72.3	
emethods	Ours	69.55%	83.0	91.0	92.6	61.7	79.3	83.3	