

Dynamically Instance-Guided Adaptation: A Backward-free Approach for Test-Time Domain Adaptive Semantic Segmentation

Tag: THU-PM-333 Poster number: 333

(v))

Wei Wang, Zhun Zhong, Weijie Wang, Xi Chen, Charles Ling, Boyu Wang*, Nicu Sebe

Quick preview

- 1. **Problem:** Adapting during test-time for segmentation
- 2. Methodology: Our efficient approach to TTDA for Semantic Segmentation eliminates the need for extra source data and improves computational efficiency.
- **3. Results:** Our approach achieves superior performance with reduced computational cost and memory usage compared to existing methods.
- **4. Impact:** Our research enables real-time inference in TTDA and DASS tasks, enhancing the practical application of these technologies.

Previous Approaches

Comparison with different TTDA methods.

The proposed DIGA is a holistic method that has the properties of effectiveness (distribution & semantic adaptation and avoid unstable training & error accumulation) and efficiency (backward-free).

Method

Pipeline

Method

Illustration

Comparison with different TTDA methods.

The proposed DIGA is a holistic method that has the properties of effectiveness (distribution & semantic adaptation and avoid unstable training & error accumulation) and efficiency (backward-free).

Method

Algorithm

$$\bar{\mu}_t^T = \lambda_{BN} \cdot \bar{\mu}^S + (1 - \lambda_{BN}) \cdot \mu_t^T,$$

$$(\bar{\sigma}_t^T)^2 = \lambda_{BN} \cdot (\bar{\sigma}^S)^2 + (1 - \lambda_{BN}) \cdot (\sigma_t^T)^2,$$

$$(3)$$

$$\mathbf{q}_{t}^{c} = \frac{\sum^{H,W} \mathbf{z}_{t}^{(h,w)} \cdot \mathbb{I}(c_{t}^{(h,w)} = c, \max_{c} \hat{p}_{t,c}^{(h,w)} \ge \mathcal{P}_{0})}{\sum^{H,W} \mathbb{I}(c_{t}^{(h,w)} = c, \max_{c} \hat{p}_{t,c}^{(h,w)} \ge \mathcal{P}_{0})}.$$
(6)

$$\bar{\mathbf{q}}_{t}^{c} = \rho_{P} \cdot \bar{\mathbf{q}}_{t-1}^{c} + (1 - \rho_{P})\mathbf{q}_{t}^{c}, \text{ with } \bar{\mathbf{q}}_{0}^{c} = \mathbf{q}_{0}^{c}.$$
 (7)

$$\tilde{p}^{(h,w)}(c|\mathbf{x}_t) = \lambda_P \cdot p^{(h,w)}(c|\mathbf{x}_t, \bar{\mathbf{q}}) + (1 - \lambda_P) \cdot p^{(h,w)}(c|\mathbf{x}_t, \mathbf{q}),$$
(9)

 $p^{(h,w)} = \lambda_F \cdot \tilde{p}^{(h,w)}(c|\mathbf{x}_t) + (1-\lambda_F)\hat{p}^{(h,w)}(c|\mathbf{x}_t), \quad (10)$

Algorithm 1 ANAX (Testing Phase)
Input: Model f_θ, target testing sample x_t.
Output: Prediction of x_t.
1. Produce feature z_t and prediction p̂_t(x_t) with distribution alignment of DAM (Eq. 3).
2. Calculate instance-aware prototypes q_t (Eq. 6).
3. Calculate historical prototypes q

_t (Eq. 7).
4. Calculate non-parametric predictions p̃_t(x_t) with SAM (Eq. 9).
5. Obtain final prediction p(x_t) by weighed fusion of p̂_t(x_t) and p̃_t(x_t) (Eq. 10).
Return: p(x_t)

Comparison with baselines

Table 1. Comparison with state-of-the-art methods in terms of mIoU. The best score for each column is **highlighted**. CS: CityScapes, BDD: BDD100K, MA: Mapillary, IDD: IDD, CC: Cross-City. *: Use an extra augmented sample during adaptation. Avg.: Mean of mIoUs over five target domains.

Method	$GTA5 \rightarrow$					Synthia \rightarrow					GTA5+Synthia \rightarrow							
	CS	BDD	MA	IDD	CC	Avg.	CS	BDD	MA	IDD	CC	Avg.	CS	BDD	MA	IDD	CC	Avg.
Source [42]	35.87	29.89	38.67	38.05	30.03	34.50	30.87	21.01	31.12	26.23	31.96	28.24	37.00	28.85	41.56	39.88	32.93	36.04
Backward-based Methods																		
TENT [41]	37.30	31.53	38.29	38.96	30.59	35.33	34.89	16.99	33.46	26.23	31.68	28.65	39.39	25.19	37.32	39.51	32.84	34.85
EATA [27]	37.08	30.67	39.35	38.75	30.24	35.22	31.31	20.52	31.59	26.46	31.91	28.36	38.45	29.34	41.63	40.33	32.91	36.53
Backward-free Methods																		
IN [28]	34.25	29.64	35.01	29.8	23.87	30.51	29.53	19.33	21.92	22.08	28.24	24.22	37.09	28.81	36.02	30.99	28.63	32.31
Momentum [33]	38.12	32.42	40.79	38.74	30.2	36.05	32.84	22.51	31.12	27.24	32.23	29.45	39.61	31.72	41.79	39.88	33.17	36.66
DUA [25]	37.79	31.76	40.26	34.75	26.32	34.18	32.17	21.56	27.42	24.06	29.87	27.02	39.17	30.59	39.95	35.30	30.65	35.13
SITA* [15]	40.64	32.94	37.80	35.66	28.19	35.26	34.63	22.51	26.60	24.64	28.18	27.79	42.62	32.24	41.20	38.82	33.22	37.62
DIGA (Ours)	45.81	35.78	44.25	42.73	33.72	40.46	41.85	29.09	36.54	38.36	36.78	36.52	46.43	33.87	43.51	42.08	34.41	40.06

Qualitative comparison of segmentation results

Ablation study

]	Modules	CS	BDD	MA	IDD	CC	Avg.
BN	Historical	35.87	29.89	<u>38.67</u>	38.05	30.03	34.50
	Instance	34.25	29.64	35.01	29.80	23.87	30.51
	DAM	39.26	33.39	40.11	37.23	30.12	36.02
ttic	Historical	38.63	29.25	37.64	41.67	32.88	36.01
Seman	Instance	<u>39.16</u>	32.26	<u>38.68</u>	35.09	27.98	34.63
	SAM	42.99	32.69	41.37	<u>41.30</u>	33.49	38.37
Association		45.81	35.78	44.25	42.73	33.72	40.46

- Effectiveness of DAM
- Effectiveness of SAM
- Effectiveness of Classifier Association

Continuous adaptation

- Two version of Tent: cumulated error
- Ours is always better than Tent

Time and space efficiency

Methods	T_{Avg}	$\mid T_{Max}$	GPU Mem.	mIoU
Source-Only	134ms	141ms	3.5GB	35.87
TENT [41] EATA [27]	411ms 235ms	425ms 490ms	14.5GB 15.6GB	37.30 37.08
Momentum [33] DUA [25] SITA [15]	144ms <u>145ms</u> 253ms	151ms <u>152ms</u> 256ms	3.5GB <u>3.6GB</u> 5.6GB	37.33 37.79 <u>40.64</u>
Ours	<u>153ms</u>	160ms	4.0GB	45.51

- Space
- Time

Thanks!

Code: <u>https://github.com/Waybaba/DIGA</u> Wechat: waybaba Twitter: waybaba1 Email: waybaba2ww@gmail.com Homepage: <u>https://sites.google.com/view/waybaba</u>