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Summary:
Methane gas detection from Airborne Hyperspectral Imagery

MethaneMapper



Main 
Contributions:

• We introduce a novel single-stage 
end-to-end approach for methane 
plume detection using a 
hyperspectral transformer

• Largest public hyperspectral 
dataset → Methane HotSpot
(MHS) dataset

• Flightlines data from 6 
different states over a time 
period of 8 years
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Motivation

● Greenhouse gas emissions are the 

invisible menace causing global 

warming

● Methane and Carbon Dioxide goes 

undetected because of invisibility

● Government is struggling to curb on 

these emissions 

● US govt. set to pass $369 billions 

towards climate change
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Chief 

Contributors

of Methane

1/3rd of Gas Comes 

from Dairy Farms and 

Livestocks 

1/3rd of Gas Comes 

from Oil and Gas 

Industry
16% of Gas comes 

from Landfill sites
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Example of 
invisibility in 
visible 
spectrum
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Methane 
emission at the 
site
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Methane gas detection from Airborne Hyperspectral Imagery
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Conventional Detection Methods

● Iterative Maximum a Posterior Differential Optical Absorption 

Spectroscopy (IMAP-DOAS) algorithm
○ Uses Lambert-Beer law to model the absorption of solar radiation in the 

medium it is passing through

○ Highly dependent on pressure and temperature of the atmosphere

● Matched Filter
○ Uses background statistics to normalize the spectral signals and match with the 

methane spectral signature at every spatial location (pixel-wise)
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Highly prone to false positives due to confusers on the 
ground such as hydrocarbon paints, roads, etc  



Conventional Detection Methods
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Needs Manual correction by an expert



Deep Learning based approach

● MethaNet An AI-driven approach to quantifying methane point-source 

emission from high-resolution 2-D plume imagery [6]
○ A shallow neural network with 4 layers for methane quantification

15[5] Kumar, Satish, "Deep remote sensing methods for methane detection in overhead hyperspectral imagery." IEEE/CVF Winter Conference on Applications of Computer Vision. 2020 (WACV).
[6] "MethaNet–An AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery." Remote Sensing of Environment 269 (2022): 112809.

MethaNet only works with a corrected and clean 
methane enhancement output from matched filter

Very limited datasets available with ground truth
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Methane HotSpot (MHS) Dataset 

Collected concentration patches from a non-profit 
entity

Mapped all patches to AVIRIS-NG flightlines 

Created point source and diffused source plume 
sites

The concentration patches verified by experts 
visiting the physical location



Dataset Statistics
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A spectral absorption aware hyperspectral transformer

architecture for methane plume detection in

hyperspectral imagery

MethaneMapper

We built MethaneMapper



We built MethaneMapper
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A transformer-based methane detection architecture with Spectral Linear Filter



We built MethaneMapper
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Takes in all 432 bands hyperspectral image



We built MethaneMapper
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Processes the 432 bands hyperspectral image to generate methane candidate maps



We built MethaneMapper
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Our Query refiner block takes the methane candidate maps and refine the random queries



We built MethaneMapper
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The refined queries narrow down the search space of the transformer decoder to 
locate the methane plumes and help to remove the false positives



MethaneMapper: Spectral Linear Filter (SLF)
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SLF filters’ out the background noise based on the spectral absorption properties 
of reflected solar radiations by methane gas

where   ri is the ith pixel in the hyperspectral image representing ground 
terrain, and t is the methane absorption pattern

Absorption of solar reflected radiation by methane is modeled as additive 
perturbation:



MethaneMapper: Spectral Linear Filter (SLF)
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The methane absorption pattern “t” is shown below



MethaneMapper: Spectral Linear Filter (SLF)
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Since our signature of interest is very weak in the xi , we do a dot product with 
vector 𝛂. This vector 𝛂 is called “matched filter” : 

where Cov-1 is the inverse of covariance of the background when no 
methane is present. The methane enhancement per pixel is computed as:

where          is the per pixel estimation of methane



MethaneMapper: Spectral Linear Filter (SLF)
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The Cov-1 in previous step is computed with an underlying assumption that the ground 
terrain does not change much, BUT it is not the case,



MethaneMapper: Spectral Linear Filter (SLF)

30

We did a simple land cover classification of the ground terrain and then compute Covk
-1

for each class k. 

Traditional Matched Filter Spectral Linear Filter Ground Mask Ground Terrain



MethaneMapper: Quantitative Performance
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MethaneMapper: Conclusion

We provide an end-to-end approach with high quality methane plume detection and provide the computer vision 

community with largest hyperspectral dataset to promote research in this field 
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By: Satish Kumar
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Thank you for Listening

METHANEMAPPER

Spectral Absorption Aware Hyperspectral Transformer for Methane Detection

Dataset and Source code: 
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