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We introduce a new system for Monocular Multi-Session SLAM, which tracks camera motion across A core subsystem of our Multi-Session SLAM method is a new approach to wide-baseline, 2-view relative camera We evaluate our full system on the EuRoC and T — ﬁ_g;_meggumzsnmztid .
multiple disjoint videos under a single global reference. Our approach couples the prediction of optical pose. Given two views as input, we alternate between estimating sparse optical flow residuals using a weight-tied ETH-3D datasets in which all the ground truth e, i g Y
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flow with optimization layers to estimate camera pose. network, and updating the relative pose estimate with an optimization layer. Our method also implicitly learns a trajectories are in a unified coordinate system. Vgl
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confidence measure for each predicted flow vector. Compared to existing methods, our approach is - ' E,! W
Simultaneous Localization and Mapping (SLAM) is the task of estimating camera motion and a 3D map oo Pyraric o1 significantly more robust and accurate. All reported ) \‘
from video. Video data in the wild often consists of not a single continuous stream, but rather multiple j— methods run in real-time (camera hz = 20 FPS) .
disjoint sessions, either deliberately such as in collaborative mapping when multiple robots perform joint
rapid 3D reconstruction, or inadvertently due to visual discontinuities in the video stream which can result j """""""""" Scene name MHO1-03 MHOI-05 V101-103  V201-203 | Cam. -2
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from camera failures, extreme parallax, rapid turns, auto-exposure lag, dark areas, or occlusions. eraMeS : + fter.
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Example: Multi-Session SLAM sparse optical flow. (2) We then | e Abl ' : T ' R | ; P S
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Our approach uses sparse optical flow to track keypoints between frames. This is as opposed to keypoint- Finally, we clamp the optical flow to ol e ol = wftl % isolation. We outperforms existing methods on Scannet. il L lessg 34669 301635
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matching approaches like Superglue and ORB. Using sparse flow has both advantages, and disadvantages. the newly-induced epipolar lines. By i i Existing approaches perform matching as a pre- ) 100059 23059
Benefit: Robust in low-texture environments. No requirement for keypoint detector. The optimizer in (2) parameterizes the epipolar lines as a function of the camera poses, and seeks to minimize processing step, whereas ours is a weight-tied network Rt 1) achng (WA DDA 097 90 o
. . . . . . . . . . . ptical-Flow
Drawback: Existing approaches to MS-SLAM are incompatible, e.g., ORB-SLAMS3 Symmetric Epipolar Distance (SED) between the predicted matches and the epipolar lines. alternating between optimization and matching. o e

Quantitative two-view results on Scannet

Differentiable Camera Pose Optimizer(s) Qualitative Two-View Matching Results

Unfortunately, the SED optimizer will converge to local Convergence basin of each optimization layer . . . . .
o T . et Comera pose — - Qualitative results on Scannet. Our two-view subsystem estimates accurate relative poses across wide
minima if initialized far from the true optimum. To remedy g nllnns == Pre-cond. [ camera baselines. It initializes all matches with uniform depth and identity relative pose. Progressive
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COr] neCtl ng DlSJOl nt TraJeCtOrleS this, we adopt a pre-conditioning stage which uses a g applications of our update operator lead to more accurate matches and higher predicted confidence.
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estimator to predict a 7DOF alignment between sequences. Qualitative results on Scannet
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