

Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention

Ju-Hyeon Nam¹

Nur Suriza Syazwany¹

Su Jung Kim¹

Sang-Chul Lee^{1,2}

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING OF INHA UNIVERSITY, REPUBLIC OF KOREA¹ DEEPCARDIO²

Medical Image Segmentation

Related Works: Multi-Scale based Method

Fig. 2: Overview of the proposed multi-scale subtraction network.

Zhao, Xiaoqi, et al. "M \$^{2} \$ SNet: Multi-scale in Multi-scale Subtraction Network for Medical Image Segmentation." arXiv preprint arXiv:2303.10894 (2023).

Related Works: Multi-Frequency based Method

Figure 2. FRCU-Net with 1) Laplacian pyramid to take convolutional features to frequency domain and 2) frequency attention mechanism for a non-linearly weighted combination of all levels of the pramid.

Azad, Reza, et al. "Deep frequency re-calibration u-net for medical image segmentation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

Observations

43

Observations

Frequency variance is higher than scale variance, which previous papers mainly focused on.

- * Frequency = ratio of the high-frequency and full-frequency
- * Scale = The size of lesions

Motivations

- > Human vision seamlessly combines scales and frequencies for interpreting the environment.
- Since medical images contains various lesion sizes, it requires multi-scale features for precise segmentation
- As medical images show higher frequency variance than scale, incorporating multi-frequency information is crucial for effective segmentation models.
- Upsampling low-resolution feature maps for loss calculation compromises model representation, leading to information loss in predicting details.

Modality-Agnostic Domain Generalizable Network

Multi-Frequency in Multi-Scale Attention Block

Multi-Frequency Channel Attention

43

✓ DCT-based Channel Attention Module

$$\mathbf{X}_{i}^{s,k} = \sum_{h=0}^{H_{s}-1} \sum_{w=0}^{W_{s}-1} (\mathbf{X}_{i}^{s})_{:,h,w} \mathbf{D}_{h,w}^{u_{k},v_{k}}$$

✓ Extract various statistic feature for suppressing noise effect

$$\mathbf{M}_{i}^{s} = \sigma(\sum_{d \in \{\text{avg,max,min}\}} \mathbf{W}_{2}(\delta(\mathbf{W}_{1}\mathbf{Z}_{d})))$$

 \checkmark Recalibrate the feature map at *s*-th scale

$$\hat{\mathbf{X}}_i^s = \mathbf{X}_i^s \times \mathbf{M}_i^s$$

Multi-Scale Spatial Attention

 \checkmark Introduce learnable parameters to control information flow

$$\bar{\mathbf{X}}_{i}^{s} = \mathbf{Conv2D}_{3}(\alpha_{i}^{s}(\hat{\mathbf{X}}_{i}^{s} \times \mathbf{F}_{i}^{s}) + \beta_{i}^{s}(\hat{\mathbf{X}}_{i}^{s} \times \mathbf{B}_{i}^{s}))$$

✓ Aggregate each refined feature from different scale branch

$$\mathbf{Y}_{i} = \mathbf{X}_{i} + \mathbf{A}(\bar{\mathbf{X}}_{i}^{1}, \mathbf{U}\mathbf{p}_{2}(\bar{\mathbf{X}}_{i}^{2}), \dots \mathbf{U}\mathbf{p}_{S}(\bar{\mathbf{X}}_{i}^{S}))$$

Ensemble Sub-Decoding Module

Algorithm 1 Ensemble Sub-Decoding Module for Multitask Learning with Deep Supervision

Input: Refined feature map \mathbf{Y}_i from *i*-th MFMSA block **Output**: Core task prediction \mathbf{T}_i^c and sub-task predictions $\{\mathbf{T}_i^{s_1}, \ldots, \mathbf{T}_i^{s_L}\}$ at *i*-th decoder

1:
$$\mathbf{P}_{i}^{c} = \mathbf{Conv2D}_{1}(\mathbf{Y}_{i})$$

2: for $l = 1, 2, ..., L$ do
3: $\mathbf{P}_{i}^{s_{l}} = \mathbf{Conv2D}_{1}(\mathbf{Y}_{i} \times \sigma (\mathbf{P}_{i}^{s_{l-1}})).$
4: end for
5: $\mathbf{T}_{i}^{s_{L}} = \mathbf{Up}_{5-i} (\mathbf{P}_{i}^{s_{L}})$
6: for $l = L - 1, ..., 0$ do
7: $\mathbf{T}_{i}^{s_{l}} = \mathbf{Up}_{5-i} (\mathbf{P}_{i}^{s_{l}}) + \mathbf{T}_{i}^{s_{l+1}}$
8: end for
9: return $\mathbf{O}_{i} = \{\mathbf{T}_{i}^{c}, \mathbf{T}_{i}^{s_{1}}, ..., \mathbf{T}_{i}^{s_{L}}\}$

Why Ensemble?

$$\mathbf{T}_{i}^{c} = \mathbf{T}_{i}^{s_{0}} = \mathbf{U}\mathbf{p}_{5-i}(\mathbf{P}_{i}^{s_{0}}) + \mathbf{T}_{i}^{s_{1}}$$
$$= [\mathbf{U}\mathbf{p}_{5-i}(\mathbf{P}_{i}^{s_{0}}) + \mathbf{U}\mathbf{p}_{5-i}(\mathbf{P}_{i}^{s_{1}})] + \mathbf{T}_{i}^{s_{2}}$$
$$= \cdots$$
$$= \sum_{l=0}^{L} \mathbf{U}\mathbf{p}_{5-i}(\mathbf{P}_{i}^{s_{l}})$$

Our decoder has <u>an ensemble effect as it aggregates</u> predictions of different tasks for the same legion.

Loss Function

Structure Loss Functions with 4 Stage Deep Supervision

$$\mathcal{L}_{total} = \sum_{i=1}^{4} \sum_{t \in \{c, s_1, s_2, \dots, s_L\}} \lambda_t \mathcal{L}_t(\mathbf{G}^t, \mathbf{U}\mathbf{p}_{5-i}(\mathbf{T}_i^t))$$

$\succ \mathcal{L}_t$: Loss function for the task t

- 1. Region Prediction (Core Task) Loss: $\mathcal{L}_R = \mathcal{L}_{IoU}^w + \mathcal{L}_{bce}^w$
- 2. Boundary Prediction (Sub Task 1) Loss: $\mathcal{L}_B = \mathcal{L}_{bce}$
- 3. Distance Map Prediction (Sub Task 2) Loss: $\mathcal{L}_D = \mathcal{L}_{mse}$

	Dermoscopy		Radiology		Ultrasound		Microscopy		Colonoscopy				
Method	ISIC20	18 [23]	COVID1	9-1 [33]	BUS	I [3]	DSB20	018 [6]	CVC-Clii	nicDB [5]	Kvasi	r [31]	P-value
	DSC	mIoU	DSC	mIoU	DSC	mIoU	DSC	mIoU	DSC	mIoU	DSC	mIoU	
UNet [52]	87.3 (0.8)	80.2 (0.7)	47.7 (0.6)	38.6 (0.6)	69.5 (0.3)	60.2 (0.2)	91.1 (0.2)	84.3 (0.3)	76.5 (0.8)	69.1 (0.9)	80.5 (0.3)	72.6 (0.4)	5.2E-06
AttUNet [45]	87.8 (0.1)	80.5 (0.1)	57.5 (0.2)	48.4 (0.2)	71.3 (0.4)	62.3 (0.6)	91.6 (0.1)	85.0 (0.1)	80.1 (0.6)	74.2 (0.5)	83.9 (0.1)	77.1 (0.1)	4.1E-06
UNet++ [74]	87.3 (0.2)	80.2 (0.1)	65.6 (0.7)	57.1 (0.8)	72.4 (0.1)	62.5 (0.2)	91.6 (0.1)	85.0 (0.1)	79.7 (0.2)	73.6 (0.4)	84.3 (0.3)	77.4 (0.2)	7.5E-07
CENet [22]	89.1 (0.2)	82.1 (0.1)	76.3 (0.4)	69.2 (0.5)	79.7 (0.6)	71.5 (0.5)	91.3 (0.1)	84.6 (0.1)	89.3 (0.3)	83.4 (0.2)	89.5 (0.7)	83.9 (0.7)	1.0E-05
TransUNet [7]	87.3 (0.2)	81.2 (0.8)	75.6 (0.4)	68.8 (0.2)	75.5 (0.5)	68.4 (0.1)	91.8 (0.3)	85.2 (0.2)	87.4 (0.2)	82.9 (0.1)	86.4 (0.4)	81.3 (0.4)	9.9E-08
FRCUNet [4]	88.9 (0.1)	83.1 (0.2)	77.3 (0.3)	70.4 (0.2)	81.2 (0.2)	73.3 (0.3)	90.8 (0.3)	83.8 (0.4)	91.8 (0.2)	87.0 (0.2)	88.8 (0.4)	83.5 (0.6)	6.6E-02
MSRFNet [57]	88.2 (0.2)	81.3 (0.2)	75.2 (0.4)	68.0 (0.4)	76.6 (0.7)	68.1 (0.7)	91.9 (0.1)	85.3 (0.1)	83.2 (0.9)	76.5 (1.1)	86.1 (0.5)	79.3 (0.4)	8.8E-07
HiFormer [26]	88.7 (0.5)	81.9 (0.5)	72.9 (1.4)	63.3 (1.5)	79.3 (0.2)	70.8 (0.1)	90.7 (0.2)	83.8 (0.4)	89.1 (0.6)	83.7 (0.6)	88.1 (1.0)	82.3 (1.2)	1.8E-05
DCSAUNet [67]	89.0 (0.3)	82.0 (0.3)	75.3 (0.4)	68.2 (0.4)	73.7 (0.5)	65.0 (0.5)	91.1 (0.2)	84.4 (0.2)	80.5 (1.2)	73.7 (1.1)	82.6 (0.5)	75.2 (0.5)	6.2E-07
M2SNet [73]	89.2 (0.2)	83.4 (0.2)	81.7 (0.4)	74.7 (0.5)	80.4 (0.8)	72.5 (0.7)	91.6 (0.2)	85.1 (0.3)	92.8 (0.8)	88.2 (0.8)	90.2 (0.5)	85.1 (0.6)	2.0E-05
SFSSNet	88.8 (0.3)	81.9 (0.2)	80.3 (0.8)	73.0 (0.7)	66.1 (0.6)	59.3 (0.8)	91.5 (0.2)	84.0 (0.2)	90.7 (0.4)	83.0 (0.7)	88.1 (0.6)	82.2 (0.7)	2.2E-06
MFSSNet	88.5 (0.2)	81.8 (0.2)	80.4 (0.7)	73.1 (0.4)	81.0 (0.1)	73.2 (0.2)	91.6 (0.1)	85.1 (0.2)	92.3 (0.5)	87.7 (0.5)	89.9 (0.6)	84.7 (0.7)	5.1E-07
SFMSNet	89.2 (0.3)	82.5 (0.3)	81.4 (0.3)	74.5 (0.3)	80.8 (0.4)	73.0 (0.3)	91.5 (0.2)	84.9 (0.4)	92.3 (0.3)	88.0 (0.3)	89.0 (0.6)	84.1 (0.5)	1.4E-04
MADGNet	90.2 (0.1)	83.7 (0.2)	83.7 (0.2)	<u>76.8</u> (0.2)	<u>81.3</u> (0.4)	<u>73.4</u> (0.5)	<u>92.0</u> (0.0)	85.5 (0.1)	<u>93.9</u> (0.6)	<u>89.5</u> (0.5)	90.7 (0.8)	85.3 (0.8)	-

✓ Quantitative Results for Seen Clinical Settings

Table 1. Segmentation results on five different modalities with *seen* clinical settings. We also provide one tailed *t*-Test results (*P*-value) compared to our method and other methods. (\cdot) denotes the standard deviations of multiple experiment results.

٩.5

✓ Quantitative Results for Unseen Clinical Settings

	oscopy	copy Radio		Ultrasound		Microscopy		Colonoscopy							
Method	PH2	[42]	COVID	19-2 [1]	STU	[75]	MonuSeg	2018 [12]	CVC-3	00 [62]	CVC-Col	onDB [58]	ETIS	[55]	P-value
	DSC	mIoU	DSC	mIoU	DSC	mIoU	DSC	mIoU	DSC	mIoU	DSC	mIoU	DSC	mIoU	
UNet [52]	90.3 (0.1)	83.5 (0.1)	47.1 (0.7)	37.7 (0.6)	71.6 (1.0)	61.6 (0.7)	29.2 (5.1)	18.9 (3.5)	66.1 (2.3)	58.5 (2.1)	56.8 (1.3)	49.0 (1.2)	41.6 (1.1)	35.4 (1.0)	1.1E-09
AttUNet [45]	89.9 (0.2)	82.6 (0.3)	43.7 (0.8)	35.2 (0.8)	77.0 (1.6)	68.0 (1.7)	39.0 (3.1)	26.5 (2.4)	63.0 (0.3)	57.2 (0.4)	56.8 (1.6)	50.0 (1.5)	38.4 (0.3)	33.5 (0.1)	6.7E-09
UNet++ [74]	88.0 (0.3)	80.1 (0.3)	50.5 (3.8)	40.9 (3.7)	77.3 (0.4)	67.8 (0.3)	25.4 (0.8)	15.3 (0.5)	64.3 (2.2)	58.4 (2.0)	57.5 (0.4)	50.2 (0.4)	39.1 (2.4)	34.0 (2.1)	1.0E-05
CENet [22]	90.5 (0.1)	83.3 (0.1)	60.1 (0.3)	49.9 (0.3)	86.0 (0.7)	77.2 (0.9)	27.7 (1.5)	16.9 (1.0)	85.4 (1.6)	78.2 (1.4)	65.9 (1.6)	59.2 (0.1)	57.0 (3.4)	51.4 (0.5)	4.5E-06
TransUNet [7]	89.5 (0.3)	82.1 (0.4)	56.9 (1.0)	48.0 (0.7)	41.4 (9.5)	32.1 (4.2)	15.9 (8.5)	9.6 (5.5)	85.0 (0.6)	77.3 (0.3)	63.7 (0.1)	58.4 (0.3)	50.1 (0.5)	44.0 (2.3)	1.6E-06
FRCUNet [4]	90.6 (0.1)	83.4 (0.2)	62.9 (1.1)	52.7 (0.9)	86.5 (2.3)	77.2 (2.7)	26.1 (5.6)	16.8 (4.3)	86.7 (0.7)	79.4 (0.3)	69.1 (1.0)	62.6 (0.9)	65.1 (1.0)	58.4 (0.5)	2.3E-05
MSRFNet [57]	90.5 (0.3)	83.5 (0.3)	58.3 (0.8)	48.4 (0.6)	84.0 (5.5)	75.2 (8.2)	9.1 (1.0)	5.3 (0.7)	72.3 (2.2)	65.4 (2.2)	61.5 (1.0)	54.8 (0.8)	38.3 (0.6)	33.7 (0.7)	1.0E-07
HiFormer [26]	86.9 (1.6)	79.1 (1.8)	54.1 (1.0)	44.5 (0.8)	80.7 (2.9)	71.3 (3.2)	21.9 (8.9)	13.2 (5.7)	84.7 (1.1)	77.5 (1.1)	67.6 (1.4)	60.5 (1.3)	56.7 (3.2)	50.1 (3.3)	2.5E-07
DCSAUNet [67]	89.0 (0.4)	81.5 (0.3)	52.4 (1.2)	44.0 (0.7)	86.1 (0.5)	76.5 (0.8)	4.3 (0.3)	2.4 (0.9)	68.9 (4.0)	59.8 (3.9)	57.8 (0.4)	49.3 (0.4)	42.9 (3.0)	36.1 (2.9)	1.3E-07
M2SNet [73]	90.7 (0.3)	83.5 (0.5)	68.6 (0.1)	58.9 (0.2)	79.4 (0.7)	69.3 (0.6)	36.3 (0.9)	23.1 (0.8)	89.9 (0.2)	83.2 (0.3)	75.8 (0.7)	68.5 (0.5)	74.9 (1.3)	67.8 (1.4)	4.9E-02
SFSSNet	89.8 (0.2)	82.2 (0.4)	65.1 (1.6)	55.5 (1.3)	59.1 (0.3)	49.3 (0.7)	21.5 (7.2)	14.3 (5.0)	81.7 (0.3)	74.7 (0.4)	65.6 (0.4)	58.4 (0.5)	56.4 (0.7)	49.4 (0.4)	2.0E-07
MFSSNet	90.2 (0.8)	83.3 (0.9)	67.6 (0.5)	57.9 (0.3)	66.1 (0.8)	59.3 (0.2)	30.1 (7.5)	20.5 (5.5)	83.3 (1.4)	76.1 (1.2)	66.0 (0.7)	59.1 (0.8)	59.3 (0.2)	52.6 (0.6)	3.9E-04
SFMSNet	90.8 (0.3)	83.9 (0.5)	67.7 (1.1)	58.0 (1.3)	84.5 (0.2)	74.3 (0.1)	28.1 (9.9)	18.2 (7.1)	84.2 (1.2)	78.1 (1.0)	75.9 (0.8)	68.3 (0.8)	68.9 (0.3)	62.7 (0.4)	7.9E-03
MADGNet	<u>91.3</u> (0.1)	<u>84.6</u> (0.1)	<u>72.2</u> (0.3)	<u>62.6</u> (0.3)	88.4 (1.0)	<u>79.9</u> (1.5)	46.7 (4.3)	<u>32.0</u> (2.9)	87.4 (0.4)	79.9 (0.4)	<u>77.5</u> (1.1)	<u>69.7</u> (1.2)	<u>77.0</u> (0.3)	<u>69.7</u> (0.5)	-

Table 2. Segmentation results on five different modalities with *unseen* clinical settings. We also provide one tailed *t*-Test results (*P*-value) compared to our method and other methods. (\cdot) denotes the standard deviations of multiple experiment results.

✓ Qualitative Results

✓ Ablation Study: Effectiveness of Multi-Scale & Multi-Frequency Attention

Figure 6. Feature visualization of SFSS, MFSS, SFMS, MFMS.

✓ Ablation Study: Effectiveness of Ensemble Sub-Decoding Module

DS	Flow	Task	Se	een	Unseen		
05	TIOW	IdSK	DSC	mIoU	DSC	mIoU	
×	-	R	90.8	85.7	75.2	68.2	
	Parallel	R&D&B	91.5	86.6	76.2	69.9	
1	Parallel	R&D&B	90.8	85.9	73.7	66.8	
	Ensemble	$R \to D \to B$	91.4	86.5	77.5	70.0	
	Ensemble	$R \leftrightarrow D \leftrightarrow B$	92.0	87.3	80.9	73.3	

Table 4. Ablation study of E-SDM on the *seen* ([5, 31]) and *un*seen ([55, 58, 62]) datasets on Colonoscopy. DS denotes Deep Supervision. R, D, B are region, distance map, and boundary task, respectively. \rightarrow and \leftrightarrow denote E-SDM without and with backward ($\times 16$ Up) stream, respectively.

Figure 7. Qualitative results between ensemble and parallel manners. (a) Input Image, (b) and (c) Predictions from Stage1 ($\times 16$ Up) and Stage4 ($\times 2$ Up). First and second rows in (b) and (c) are predictions with **ensemble (Ours)** and parallel manners.

Conclusion

• We propose MADGNet, leveraging the benefits of multi-scale and multi-frequency features, which are crucial for effective medical image segmentation.

• MFMSA enhances boundary cues extraction, improving segmentation accuracy.

 E-SDM mitigates information loss during multi-task learning, enhancing segmentation performance.

Thank you

