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Medical Image Segmentation
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Related Works: Multi-Scale based Method

✓ Multi-Scale Subtraction Module

✓ Context Enhancement Module

✓ Feature Map Loss

✓ Vulnerable to severe noise image

Zhao, Xiaoqi, et al. "M $ {̂2} $ SNet: Multi-scale in Multi-scale Subtraction Network for Medical Image Segmentation." arXiv preprint arXiv:2303.10894 (2023).



Related Works: Multi-Frequency based Method

✓ Multi-Frequency Recalibration Module

✓ Laplacian Pyramid-based Method

✓ Hard to capture various lesion

Azad, Reza, et al. "Deep frequency re-calibration u-net for medical image segmentation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.



Observations

Observations

➢Frequency variance is higher than scale variance, which 

previous papers mainly focused on.

* Frequency = ratio of the high-frequency and full-frequency

* Scale = The size of lesions

Scale vs Frequency distribution 

per modality



Motivations

➢ Human vision seamlessly combines scales and frequencies for interpreting the environment.

➢ Since medical images contains various lesion sizes, it requires multi-scale features for precise 

segmentation 

➢ As medical images show higher frequency variance than scale, incorporating multi-frequency 

information is crucial for effective segmentation models.

➢ Upsampling low-resolution feature maps for loss calculation compromises model representation, 

leading to information loss in predicting details.



Modality-Agnostic Domain Generalizable Network



Multi-Frequency in Multi-Scale Attention Block



Multi-Frequency Channel Attention

✓ DCT-based Channel Attention Module
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✓ Extract various statistic feature for suppressing noise effect
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✓ Recalibrate the feature map at 𝑠-th scale
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Multi-Scale Spatial Attention

✓ Introduce learnable parameters to control information flow
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✓ Aggregate each refined feature from different scale branch
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Ensemble Sub-Decoding Module

Why Ensemble?
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➢ Our decoder has an ensemble effect as it aggregates 

predictions of different tasks for the same legion.



Loss Function

Structure Loss Functions with 4 Stage Deep Supervision

ℒ𝑡𝑜𝑡𝑎𝑙 =

𝑖=1

4



𝑡∈{𝑐,𝑠1,𝑠2,…,𝑠𝐿}

λ𝑡ℒ𝑡(𝐆
𝑡 , 𝐔𝐩5−𝑖(𝐓𝑖

𝑡))

➢ ℒ𝑡: Loss function for the task 𝑡

1. Region Prediction (Core Task) Loss: ℒ𝑅 = ℒ𝐼𝑜𝑈
𝑤 + ℒ𝑏𝑐𝑒

𝑤

2. Boundary Prediction (Sub Task 1) Loss: ℒ𝐵 = ℒ𝑏𝑐𝑒
3. Distance Map Prediction (Sub Task 2) Loss: ℒ𝐷 = ℒ𝑚𝑠𝑒



Experiment

✓ Quantitative Results for Seen Clinical Settings



Experiment

✓ Quantitative Results for Unseen Clinical Settings



Experiment

✓ Qualitative Results



Experiment

✓ Ablation Study: Effectiveness of Multi-Scale & Multi-Frequency Attention



Experiment

✓ Ablation Study: Effectiveness of Ensemble Sub-Decoding Module



Conclusion

o We propose MADGNet, leveraging the benefits of multi-scale and multi-frequency 

features, which are crucial for effective medical image segmentation.

o MFMSA enhances boundary cues extraction, improving segmentation accuracy.

o E-SDM mitigates information loss during multi-task learning, enhancing 

segmentation performance.



Thank you
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